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Preface 

This book is part of a 3-volume set with the written versions of all invited talks, papers and 
posters presented at VECPAR'2000 - 4th International Meeting on Vector and Parallel 
Processing. 

The Preface and the Table of Contents are identical in all 3 volumes (one for each day of the 
conference), numbered in sequence. Papers are grouped according to the session where they 
were presented. 

The conference programme added up to a total of 6 plenary and 20 parallel sessions, comprising 
6 invited talks. 66 papers and 11 posters. 

It is our great pleasure to express our gratitude to all people that helped us during the 
preparation of this event. The expertise provided by the Scientific Committee was crucial in the 
selection of more than 100 abstracts submitted for possible presentation. 

Even at the risk of forgetting some people, we would like to express our gratitude to the 
following people, whose collaboration went well beyond the call of duty. Fernando Jorge and 
Vitor Carvalho. for creation and maintenance of the conference web page; Alice Silva for the 
secretarial work; Dr. Jaime Villate for his assistance in organisational matters; and Nuno Sousa 
and Alberto Mota, for authoring the procedure for abstract submission via web. 

Porto, June 2000 The Organising and Scientific Committee Chairs 

VECPAR'2000 was held at Fundacäo Dr. Antonio Cupertino de Miranda, in Porto (Portugal), 
from 21 to 23 June, 2000. 

VECPAR is a series of conferences, on vector and parallel computing organised by the Faculty 
of Engineering of the University of Porto (FEUP) since 1993. 
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Computational Grids* 

Ian Foster 
Mathematics and Computer Science Division 

Argonne National Laboratory 
Argonne.IL 60439 

Carl Kesselman 
Information Sciences Institute 

University of Southern California 
Marina del Rev. CA 90292 

In this introductory chapter, we lay the groundwork for the rest of the book by providing a more 
detailed picture of the expected purpose, shape, and architecture of future grid systems. We structure 
the chapter in terms of six questions that we believe are central to this discussion: Why do we need 
computational grids? What types of applications will grids be used for? Who will use grids? How will 
grids be used? What is involved in building a grid? And, what problems must be solved to make grids 
commonplace? We provide an overview of each of these issues here, referring to subsequent chapters 
for more detailed discussion. 

1    Reasons for Computational Grids 

Why do we need computational grids? Computational approaches to problem solving have proven 
their worth in almost every field of human endeavor. Computers are used for modeling and simulat- 
ing complex scientific and engineering problems, diagnosing medical conditions, controlling industrial 
equipment, forecasting the weather, managing stock portfolios, and many other purposes. Yet. al- 
though there are certainly challenging problems that exceed our ability to solve them, computers are 
still used much less extensively than they could be. To pick just one example, university researchers 
make extensive use of computers when studying the impact of changes in land use on biodiversity, but 
city planners selecting routes for new roads or planning new zoning ordinances do not. Yet it is local 
decisions such as these that, ultimately, shape our future. 

There are a variety of reasons for this relative lack of use of computational problem-solving meth- 
ods, including lack of appropriate education and tools. But one important factor is that the average 
computing environment remains inadequate for such computationally sophisticated purposes. While 
today's PC is faster than the Cray supercomputer of 10 years ago. it is still far from adequate for 
predicting the outcome of complex actions or selecting from among many choices. That, after all. is 
why supercomputers have continued to evolve. 

'Reprinted by permission of Morgan Kaufmann Publishers from The Grid: Blueprint for a Future Computing Infras- 
tructure. I. Foster and C. Kesselman (Eds). 1998. 
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1.1 Increasing Delivered Computation 

We believe that the opportunity exists to provide users—whether city planners, engineers, or scientists— 
with substantially more computational power:  an increase of three orders of magnitude within five 
years, and five orders of magnitude within a decade.   These dramatic increases will be achieved by 
innovations in a wide range of areas: 

1. Technology improvement: Evolutionary changes in VLSI technology and microprocessor archi- 
tecture can be expected to result in a factor of 10 increase in computational capabilities in the 
next five years, and a factor of 100 increase in the next ten. 

2. Increase in demand-driven access to computational power: Many applications have only episodic 
requirements for substantial computational resources. For example, a medical diagnosis system 
may be run only when a cardiogram is performed, a stockmarket simulation only when a user 
recomputes retirement benefits, or a seismic simulation only after a major earthquake. If mecha- 
nisms are in place to allow reliable, instantaneous, and transparent access to high-end resources, 
then from the perspective of these applications it is as if those resources are dedicated to them. 
Given the existence of multiteraFLOPS systems, an increase in apparent computational power 
of three or more orders of magnitude is feasible. 

3. Increased utilization of idle capacity: Most low-end computers (PCs and workstations) are often 
idle: various studies report utilizations of around 309£ in academic and commercial environ- 
ments [47]. [21]. Utilization can be increased by a factor of two. even for parallel programs [4]. 
without impinging significantly on productivity. The benefit to individual users can be sub- 
stantially greater: factors of 100 or 1.000 increase in peak computational capacity have been 
reported [41]. [75]. 

4. Greater sharing of computational results: The daily weather forecast involves perhaps 1014 nu- 
merical operations. If we assume that the forecast is of benefit to 10' people, we have 1021 

effective operations—comparable to the computation performed each day on all the world's 
PCs. Few other computational results or facilities are shared so effectively today, but they 
may be in the future as other scientific communities adopt a "big science" approach to com- 
putation. The key to more sharing may be the development of collaboratories: "... centerfs] 
without walls, in which the nation's researchers can perform their research without regard to 
geographical location—interacting with colleagues, accessing instrumentation, sharing data and 
computational resources, and accessing information in digital libraries"   [48]. 

5. New problem-solving techniques and tools: A variety of approaches can improve the efficiency 
or ease with which computation is applied to problem solving. For example, network-enabled 
solvers [17]. [11] allow users to invoke advanced numerical solution methods without having 
to install sophisticated software. Teleimmersion techniques [50] facilitate the sharing of com- 
putational results by supporting collaborative steering of simulations and exploration of data 
sets. 

Underlying each of these advances is the synergistic use of high-performance networking, comput- 
ing, and advanced software to provide access to advanced computational capabilities, regardless of the 
location of users and resources. 

1.2 Definition of Computational Grids 

The current status of computation is analogous in some respects to that of electricity around 1910. At 
that time, electric power generation was possible, and new devices were being devised that depended 
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on electric power, but the need for each user to build and operate a new generator hindered use. 
The truly revolutionary development was not, in fact, electricity, but the electric power grid and the 
associated transmission and distribution technologies. Together, these developments provided reliable, 
low-cost access to a standardized service, with the result that power—which for most of human history 
has been accessible only in crude and not especially portable forms (human effort, horses, water power, 
steam engines, candles)—became universally accessible. By allowing both individuals and industries 
to take for granted the availability of cheap, reliable power, the electric power grid made possible both 
new devices and the new industries that manufactured them. 

By analogy, we adopt the term computational grid for the infrastructure that will enable the in- 
creases in computation discussed above. A computational grid is a hardware and software infrastruc- 
ture that provides dependable, consistent, pervasive, and inexpensive access to high-end computational 
capabilities. 

We talk about an infrastructure because a computational grid is concerned, above all, with large- 
scale pooling of resources, whether compute cycles, data, sensors, or people. Such pooling requires 
significant hardware infrastructure to achieve the necessary interconnections and software infrastruc- 
ture to monitor and control the resulting ensemble. In the rest of this chapter, and throughout the 
book, we discuss in detail the nature of this infrastructure. 

The need for dependable service is fundamental. Users require assurances that they will receive pre- 
dictable, sustained, and often high levels of performance from the diverse components that constitute 
the grid: in the absence of such assurances, applications will not be written or used. The performance 
characteristics that are of interest will vary widely from application to application, but may include 
network bandwidth, latency, jitter, computer power, software services, security, and reliability. 

The need for consistency of service is a second fundamental concern. As with electric power, we 
need standard services, accessible via standard interfaces, and operating within standard parameters. 
Without such standards, application development and pervasive use are impractical. A significant 
challenge when developing standards is to encapsulate heterogeneity without compromising high- 
performance execution. 

Pervasive access allows us to count on services always being available, within whatever environment 
we expect to move. Pervasiveness does not imply that resources are everywhere or are universally 
accessible. We cannot access electric power in a new home until wire has been laid and an account 
established with the local utility: computational grids will have similarly circumscribed availability 
and controlled access. However, we will be able to count on universal access within the confines of 
whatever environment the grid is designed to support. 

Finally, an infrastructure must offer inexpensive (relative to income) access if it is to be broadly 
accepted and used. Homeowners and industrialists both make use of remote billion-dollar power plants 
on a daily basis because the cost to them is reasonable. A computational grid must achieve similarly 
attractive economics. 

It is the combination of dependability, consistency, and pervasiveness that will cause computational 
grids to have a transforming effect on how computation is performed and used. By increasing the set 
of capabilities that can be taken for granted to the extent that they are noticed only by their absence, 
grids allow new tools to be developed and widely deployed. Much as pervasive access to bitmapped 
displays changed our baseline assumptions for the design of application interfaces, computational grids 
can fundamentally change the way we think about computation and resources. 

1.3    The Impact of Grids 

The history of network computing shows that orders-of-magnitude improvements in underlying tech- 
nology invariably enable revolutionary, often unanticipated, applications ofthat technology, which in 
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turn motivate further technological improvements. As a result, our view of network computing has 
undergone repeated transformations over the past 40 years. 

There is considerable evidence that another such revolution is imminent. The capabilities of both 
computers and networks continue to increase dramatically. Ten years of research on metacomputing 
has created a solid base of experience in new applications that couple high-speed networking and 
computing. The time seems ripe for a transition from the heroic days of metacomputing to more 
integrated computational grids with dependable and pervasive computational capabilities and consis- 
tent interfaces. In such grids, today's metacomputing applications will be routine, and programmers 
will be able to explore a new generation of yet more interesting applications that leverage teraFLOP 
computers and petabyte storage systems interconnected by gigabit networks. We present two simple 
examples to illustrate how grid functionality may transform different aspects of our lives. 

Today's home finance software packages leverage the pervasive availability of communication tech- 
nologies such as modems. Internet service providers, and the Web to integrate up-to-date stock prices 
obtained from remote services into local portfolio value calculations. However, the actual computa- 
tions performed on this data are relatively simple. In tomorrow's grid environment, we can imagine 
individuals making stock-purchasing decisions on the basis of detailed Monte Carlo analyses of future 
asset value, performed on remote teraFLOP computers. The instantaneous use of three orders of 
magnitude more computing power than today will go unnoticed by prospective retirees, but their lives 
will be different because of more accurate information. 

Today, citizen groups evaluating a proposed new urban development must study uninspiring 
blueprints or perspective drawings at city hall. A computational grid will allow them to call on 
powerful graphics computers and databases to transform the architect's plans into realistic virtual re- 
ality depictions and to explore such design issues as energy consumption, lighting efficiency, or sound 
quality. Meeting online to walk through and discuss the impact of the new development on their 
community, they can arrive at better urban design and hence improved quality of life. Virtual reality- 
based simulation models of Los Angeles, produced by William Jepson. and the walkthrough model of 
Soda Hall at the University of California-Berkeley, constructed by Carlo Seguin and his colleagues, 
are interesting exemplars of this use of computing [9]. 

1.4    Electric Power Grids 

We conclude this section by reviewing briefly some salient features of the computational grid's name- 
sake. The electric power grid is remarkable in terms of its construction and function, which together 
make it one of the technological marvels of the 20th century. Within large geographical regions (e.g.. 
North America), it forms essentially a single entity that provides power to billions of devices, in a 
relatively efficient, low-cost, and reliable fashion. The North American grid alone links more than ten 
thousand generators with billions of outlets via a complex web of physical connections and trading 
mechanisms [12]. The components from which the grid is constructed are highly heterogeneous in 
terms of their physical characteristics and are owned and operated by different organizations. Con- 
sumers differ significantly in terms of the amount of power they consume, the service guarantees they 
require, and the amount they are prepared to pay. 

Analogies are dangerous things, and electricity is certainly very different from computation in 
many respects. Nevertheless, the following aspects of the power grid seem particularly relevant to the 
current discussion. 

Importance of Economics 

The role and structure of the power grid are driven to a large extent by economic factors. Oil- and 
coal-fired generators have significant economies of scale. A power company must be able to call upon 
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reserve capacity equal to its largest generator in case that generator fails: interconnections between 
regions allow for sharing of such reserve capacity, as well as enabling trading of excess power. The 
impact of economic factors on computational grids is not well understood [34]. Where and when are 
there economies of scale to be obtained in computational capabilities? Might economic factors lead 
us away from today's model of a "computer on every desktop"? We note an intriguing development. 
Recent advances in power generation technology (e.g.. small gas turbines) and the deregulation of 
the power industry are leading some analysts to look to the Internet for lessons regarding the future 
evolution of the electric power grid! 

Importance of Politics 

The developers of large-scale grids tell us that their success depended on regulatory, political, and 
institutional developments as much as on technical innovation [12]. This lesson should be taken to 
heart by developers of future computational grids. 

Complexity of Control 

The principal technical challenges in power grids—once technology issues relating to efficient gen- 
eration and high-voltage transmission had been overcome—relate to the management of a complex 
ensemble in which changes at a single location can have far-reaching consequences [12]. Hence, we find 
that the power grid includes a sophisticated infrastructure for monitoring, management, and control. 
Again, there appear to be many parallels between this control problem and the problem of providing 
performance guarantees in large-scale, dynamic, and heterogeneous computational grid environments. 

2    Grid Applications 

What types of applications will grids be used for? Building on experiences in gigabit test beds [42]. [59]. 
the I-WAY network [19]. and other experimental systems, we have identified five major application 
classes for computational grids, listed in Table 1 and described briefly in this section. More details 
about applications and their technical requirements are provided in the referenced chapters. 

2.1     Distributed Supercomputing 

Distributed supercomputing applications use grids to aggregate substantial computational resources 
in order to tackle problems that cannot be solved on a single system. Depending on the grid on 
which we are working (see Section 3). these aggregated resources might comprise the majority of the 
supercomputers in the country or simply all of the workstations within a company. Here are some 
contemporary examples: 

• Distributed interactive simulation (DIS) is a technique used for training and planning in the 
military. Realistic scenarios may involve hundreds of thousands of entities, each with potentially 
complex behavior patterns. Yet even the largest current supercomputers can handle at most 
20.000 entities. In recent work, researchers at the California Institute of Technology have shown 
how multiple supercomputers can be coupled to achieve record-breaking levels of performance. 

• The accurate simulation of complex physical processes can require high spatial and temporal 
resolution in order to resolve fine-scale detail. Coupled supercomputers can be used in such 
situations to overcome resolution barriers and hence to obtain qualitatively new scientific re- 
sults. Although high latencies can pose significant obstacles, coupled supercomputers have been 
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Category Examples Characteristics 

Distributed DIS Very large problems needing 

supercomputing Stellar dynamics 
Ab initio chemistry 

lots of CPU. memory, etc. 

High Chip design Harness many otherwise idle 

throughput Parameter studies resources to increase 
Cryptographic problems aggregate throughput 

On demand Medical instrumentation Remote resources integrated 
Network-enabled solvers with local computation, often 
Cloud detection for bounded amount of time 

Data Sky survey Svnthesis of new information 
intensive Physics data 

Data assimilation 
from many or large data sources 

Collaborative Collaborative design Support communication or 

Data exploration collaborative work between 
Education multiple participants 

Table 1: Five major classes of grid applications. 

used successfully in cosmology [54]. high-resolution ab initio computational chemistry computa- 
tions [52]. and climate modeling [45]. 

Challenging issues from a grid architecture perspective include the need to coschedule what are 
often scarce and expensive resources, the scalability of protocols and algorithms to tens or hundreds 
of thousands of nodes, latency-tolerant algorithms, and achieving and maintaining high levels of per- 
formance across heterogeneous systems. 

2.2    High-Throughput Computing 

In high-throughput computing, the grid is used to schedule large numbers of loosely coupled or in- 
dependent tasks, with the goal of putting unused processor cycles (often from idle workstations) to 
work. The result may be. as in distributed supercomputing, the focusing of available resources on a 
single problem, but the quasi-independent nature of the tasks involved leads to very different types of 
problems and problem-solving methods. Here are some examples: 

• Platform Computing Corporation reports that the microprocessor manufacturer Advanced Micro 
Devices used high-throughput computing techniques to exploit over a thousand computers during 
the peak design phases of their K6 and K7 microprocessors. These computers are located on 
the desktops of AMD engineers at a number of AMD sites and were used for design verification 
only when not in use by engineers. 

• The Condor system from the University of Wisconsin is used to manage pools of hundreds 
of workstations at universities and laboratories around the world [41]. These resources have 
been used for studies as diverse as molecular simulations of liquid crystals, studies of ground- 
penetrating radar, and the design of diesel engines. 

• More loosely organized efforts have harnessed tens of thousands of computers distributed world- 
wide to tackle hard cryptographic problems [40]. 
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2.3 On-Demand Computing 

On-demand applications use grid capabilities to meet short-term requirements for resources that can- 
not be cost-effectively or conveniently located locally. These resources may be computation, soft- 
ware, data repositories, specialized sensors, and so on. In contrast to distributed supercomputing 
applications, these applications are often driven by cost-performance concerns rather than absolute 
performance. For example: 

• The NEOS [17] and NetSolve [11] network-enhanced numerical solver systems allow users to 
couple remote software and resources into desktop applications, dispatching to remote servers 
calculations that are computationally demanding or that require specialized software. 

• A computer-enhanced MRI machine and scanning tunneling microscope (STM) developed at 
the National Center for Supercomputing Applications use supercomputers to achieve realtime 
image processing [57]. [58]. The result is a significant enhancement in the ability to understand 
what we are seeing and. in the case of the microscope, to steer the instrument. 

• A system developed at the Aerospace Corporation for processing of data from meteorological 
satellites uses dynamically acquired supercomputer resources to deliver the results of a cloud 
detection algorithm to remote meteorologists in quasi real time [38]. 

The challenging issues in on-demand applications derive primarily from the dynamic nature of 
resource requirements and the potentially large populations of users and resources. These issues 
include resource location, scheduling, code management, configuration, fault tolerance, security, and 
payment mechanisms. 

2.4 Data-Intensive Computing 

In data-intensive applications, the focus is on synthesizing new information from data that is main- 
tained in geographically distributed repositories, digital libraries, and databases. This synthesis pro- 
cess is often computationally and communication intensive as well. 

• Future high-energy physics experiments will generate terabytes of data per day. or around a 
petabyte per year. The complex queries used to detect "interesting" events may need to access 
large fractions of this data [43]. The scientific collaborators who will access this data are widely 
distributed, and hence the data systems in which data is placed are likely to be distributed as 
well. 

• The Digital Sky Survey will, ultimately, make many terabytes of astronomical photographic 
data available in numerous network-accessible databases. This facility enables new approaches 
to astronomical research based on distributed analysis, assuming that appropriate computational 
grid facilities exist. 

• Modern meteorological forecasting systems make extensive use of data assimilation to incorporate 
remote satellite observations. The complete process involves the movement and processing of 
many gigabytes of data. 

Challenging issues in data-intensive applications are the scheduling and configuration of complex, 
high-volume data flows through multiple levels of hierarchy. 
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2.5     Collaborative Computing 

Collaborative applications are concerned primarily with enabling and enhancing human-to-human 
interactions. Such applications are often structured in terms of a virtual shared space. Many col- 
laborative applications are concerned with enabling the shared use of computational resources such 
as data archives and simulations: in this case, they also have characteristics of the other application 
classes just described. For example: 

• The BoilerMaker system developed at Argonne National Laboratory allows multiple users to 
collaborate on the design of emission control systems in industrial incinerators [20]. The different 
users interact with each other and with a simulation of the incinerator. 

• The CAYE5D system supports remote, collaborative exploration of large geophysical data sets 
and the models that generate them—for example, a coupled physical/biological model of the 
Chesapeake Bay [74]. 

• The NICE system developed at the University of Illinois at Chicago allows children to participate 
in the creation and maintenance of realistic virtual worlds, for entertainment and education [60]. 

Challenging aspects of collaborative applications from a grid architecture perspective are the real- 
time requirements imposed by human perceptual capabilities and the rich variety of interactions that 
can take place. 

We conclude this section with three general observations. First, we note that even in this brief 
survey we see a tremendous variety of already successful applications. This rich set has been developed 
despite the significant difficulties faced by programmers developing grid applications in the absence of 
a mature grid infrastructure. As grids evolve, we expect the range and sophistication of applications to 
increase dramatically. Second, we observe that almost all of the applications demonstrate a tremendous 
appetite for computational resources (CPU. memory, disk, etc.) that cannot be met in a timely fashion 
by expected growth in single-system performance. This emphasizes the importance of grid technologies 
as a means of sharing computation as well as a data access and communication medium. Third, we see 
that many of the applications are interactive, or depend on tight synchronization with computational 
components, and hence depend on the availability of a grid infrastructure able to provide robust 
performance guarantees. 

3    Grid Communities 

Who will use grids? One approach to understanding computational grids is to consider the commu- 
nities that they serve. Because grids are above all a mechanism for sharing resources, we ask. What 
groups of people will have sufficient incentive to invest in the infrastructure required to enable sharing, 
and what resources will these communities want to share? 

One perspective on these questions holds that the benefits of sharing will almost always outweigh 
the costs and. hence, that we will see grids that link large communities with few common interests, 
within which resource sharing will extend to individual PCs and workstations. If we compare a 
computational grid to an electric power grid, then in this view, the grid is quasi-universal, and every 
user has the potential to act as a cogenerator. Skeptics respond that the technical and political costs 
of sharing resources will rarely outweigh the benefits, especially when coupling must cross institutional 
boundaries. Hence, they argue that resources will be shared only when there is considerable incentive 
to do so: because the resource is expensive, or scarce, or because sharing enables human interactions 
that are otherwise difficult to achieve. In this view, grids will be specialized, designed to support 
specific user communities with specific goals. 
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Rather than take a particular position on how grids will evolve, we propose what we see as four 
plausible scenarios, each serving a different community. Future grids will probably include elements 
of all four. 

3.1 Government 

The first community that we consider comprises the relatively small number—thousands or perhaps 
tens of thousands—of officials, planners, and scientists concerned with problems traditionally assigned 
to national government, such as disaster response, national defense, and long-term research and plan- 
ning. There can be significant advantage to applying the collective power of the nation's fastest 
computers, data archives, and intellect to the solution of these problems. Hence, we envision a grid 
that uses the fastest networks to couple relatively small numbers of high-end resources across the 
nation—perhaps tens of teraFLOP computers, petabytes of storage, hundreds of sites, thousands of 
smaller systems—for two principal purposes: 

1. To provide a "strategic computing reserve." allowing substantial computing resources to be 
applied to large problems in times of crisis, such as to plan responses to a major environmental 
disaster, earthquake, or terrorist attack 

2. To act as a "national collaboratory." supporting collaborative investigations of complex scientific 
and engineering problems, such as global change, space station design, and environmental cleanup 

An important secondary benefit of this high-end national supercomputing grid is to support re- 
source trading between the various operators of high-end resources, hence increasing the efficiency 
with which those resources are used. 

This national grid is distinguished by its need to integrate diverse high-end (and hence complex) 
resources, the strategic importance of its overall mission, and the diversity of competing interests that 
must be balanced when allocating resources. 

3.2 A Health Maintenance Organization 

In our second example, the community supported by the grid comprises administrators and medi- 
cal personnel located at a small number of hospitals within a metropolitan area. The resources to be 
shared are a small number of high-end computers, hundreds of workstations, administrative databases, 
medical image archives, and specialized instruments such as MRI machines. CAT scanners, and car- 
dioangiography devices. The coupling of these resources into an integrated grid enables a wide range 
of new. computationally enhanced applications: desktop tools that use centralized supercomputer re- 
sources to run computer-aided diagnosis procedures on mammograms or to search centralized medical 
image archives for similar cases: life-critical applications such as telerobotic surgery and remote car- 
diac monitoring and analysis: auditing software that uses the many workstations across the hospital 
to run fraud detection algorithms on financial records: and research software that uses supercom- 
puters and idle workstations for epidemiological research. Each of these applications exists today in 
research laboratories, but has rarely been deployed in ordinary hospitals because of the high cost of 
computation. 

This private grid is distinguished by its relatively small scale, central management, and common 
purpose on the one hand, and on the other hand by the complexity inherent in using common in- 
frastructure for both life-critical applications and less reliability-sensitive purposes and by the need 
to integrate low-cost commodity technologies. We can expect grids with similar characteristics to be 
useful in manv institutions. 
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3.3 A Materials Science Collaboratory 

The community in our third example is a group of scientists who operate and use a variety of instru- 
ments, such as electron microscopes, particle accelerators, and X-ray sources, for the characterization 
of materials. This community is fluid and highly distributed, comprising many hundreds of university 
researchers and students from around the world, in addition to the operators of the various instru- 
ments (tens of instruments, at perhaps ten centers). The resources that are being shared include the 
instruments themselves, data archives containing the collective knowledge of this community, sophis- 
ticated analysis software developed by different groups, and various supercomputers used for analysis. 
Applications enabled by this grid include remote operation of instruments, collaborative analysis, and 
supercomputer-based online analysis. 

This virtual grid is characterized by a strong unifying focus and relatively narrow goals on the one 
hand, and on the other hand by dynamic membership, a lack of central control, and a frequent need 
to coexist with other uses of the same resources. We can imagine similar grids arising to meet the 
needs of a variety of multi-institutional research groups and multicompany virtual teams created to 
pursue long- or short-term goals. 

3.4 Computational Market Economy 

The fourth community that we consider comprises the participants in a broad-based market economy 
for computational services. This is a potentially enormous community with no connections beyond 
the usual market-oriented relationships. We can expect participants to include consumers, with their 
diverse needs and interests: providers of specialized services, such as financial modeling, graphics 
rendering, and interactive gaming: providers of compute resources: network providers, who contract 
to provide certain levels of network service; and various other entities such as banks and licensing 
organizations. 

This public grid is in some respects the most intriguing of the four scenarios considered here, but 
is also the least concrete. One area of uncertainty concerns the extent to which the average consumer 
will also act as a producer of computational resources. The answer to this question seems to depend on 
two issues. Will applications emerge that can exploit loosely coupled computational resources? And. 
will owners of resources be motivated to contribute resources? To date, large-scale activity in this 
area has been limited to fairly esoteric computations—such as searching for prime numbers, breaking 
cryptographic codes [40]. or detecting extraterrestrial communications [64]—with the benefit to the 
individuals being the fun of participating and the potential momentary fame if their computer solves 
the problem in question. 

We conclude this section by noting that, in our view, each of these scenarios seems quite feasible: 
indeed, substantial prototypes have been created for each of the grids that we describe. Hence, we 
expect to see not just one single computational grid, but rather many grids, each serving a different 
community with its own requirements and objectives. Just which grids will evolve depends critically on 
three issues: the evolving economics of computing and networking, and the services that these physical 
infrastructure elements are used to provide: the institutional, regulatory, and political frameworks 
within which grids may develop: and. above all. the emergence of applications able to motivate users 
to invest in and use grid technologies. 

4    Using Grids 

How will grids be used? In metacomputing experiments conducted to date, users have been "heroic" 
programmers, willing to spend large amounts of time programming complex systems at a low level. 
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Class 
End users 

Application 
developers 
Tool 
developers 
Grid 
developers 

Purpose 
Solve 
problems 
Develop 
applications 
Develop tools, 
programming models 
Provide basic 
grid services 

Makes use of 
Applications 

Programming 
models, tools 
Grid 
services 
Local system 
services 

Concerns 
Transparency, 
performance 
Ease of use, 
performance 
Adaptivity, exposure of 
performance, security 
Local simplicity, 
connectivitv. securitv 

System 
administrators 

Manage 
grid resources 

Management 
tools 

Balancing local 
and global concerns 

Table 2: Classes of grid users. 

The resulting applications have provided compelling demonstrations of what might be. but in most 
cases are too expensive, unreliable, insecure, and fragile to be considered suitable for general use. 

For grids to become truly useful, we need to take a significant step forward in grid programming, 
moving from the equivalent of assembly language to high-level languages, from one-off libraries to 
application toolkits, and from hand-crafted codes to shrink-wrapped applications. These goals are 
familiar to us from conventional programming, but in a grid environment we are faced with the addi- 
tional difficulties associated with wide area operation—in particular, the need for grid applications to 
adapt to changes in resource properties in order to meet performance requirements. As in conventional 
computing, an important step toward the realization of these goals is the development of standards 
for applications, programming models, tools, and services, so that a division of labor can be achieved 
between the users and developers of different types of components. 

We structure our discussion of grid tools and programming in terms of the classification illustrated 
in Table 2. At the lowest level, we have grid developers—the designers and implementors of what we 
might call the "Grid Protocol," by analogy with the Internet Protocol that provides the lowest-level 
services in the Internet—who provide the basic services required to construct a grid. Above this, we 
have tool developers, who use grid services to construct programming models and associated tools, 
layering higher-level services and abstractions on top of the more fundamental services provided by 
the grid architecture. Application developers, in turn, build on these programming models, tools, and 
services to construct grid-enabled applications for end users who. ideally, can use these applications 
without being concerned with the fact that they are operating in a grid environment. A fifth class 
of users, system administrators, is responsible for managing grid components. We now examine this 
model in more detail. 

4.1 Grid Developers 

A very small group of grid developers are responsible for implementing the basic services referred to 
above. We discuss the concerns encountered at this level in Section 5. 

4.2 Tool Developers 

Our second group of users are the developers of the tools, compilers, libraries, and so on that implement 
the programming models and services used by application developers. Today's small population of grid 
tool developers (e.g.. the developers of Condor [41]. Nimrod [1]. NEOS [17]. Net Solve [11]. Horus [68]. 

- 11 - 



FEUP - Faculdade de Engenharia da Universidade do Porto 

grid-enabled implementations of the Message Passing Interface (MPI) [27]. and CAVERN [39]) must 
build their tools on a very narrow foundation, comprising little more than the Internet Protocol. We 
envision that future grid systems will provide a richer set of basic services, hence making it possible 
to build more sophisticated and robust tools. We discuss the nature and implementation of those 
basic services in Section 5: briefly, they comprise versions of those services that have proven effective 
on today's end systems and clusters, such as authentication, process management, data access, and 
communication, plus new services that address specific concerns of the grid environment, such as 
resource location, information, fault detection, security, and electronic payment. 

Tool developers must use these basic services to provide efficient implementations of the program- 
ming models that will be used by application developers. In constructing these translations, the tool 
developer must be concerned not only with translating the existing model to the grid environment, but 
also with revealing to the programmer those aspects of the grid environment that impact performance. 
For example, a grid-enabled MPI [27] can seek to adapt the MPI model for grid execution by incorpo- 
rating specialized techniques for point-to-point and collective communication in highly heterogeneous 
environments: implementations of collective operations might use multicast protocols and adapt a 
combining tree structure in response to changing network loads. It should probably also extend the 
MPI model to provide programmers with access to resource location services, information about grid 
topology, and group communication protocols. 

4.3    Application Developers 

Our third class of users comprises those who construct grid-enabled applications and components. 
Today, these programmers write applications in what is, in effect, an assembly language: explicit 
calls to the Internet Protocol's User Datagram Protocol (UDP) or Transmission Control Protocol 
(TCP), explicit or no management of failure, hard-coded configuration decisions for specific computing 
systems, and so on. We are far removed from the portable, efficient, high-level languages that are 
used to develop sequential programs, and the advanced services that programmers can rely upon when 
using these languages, such as dynamic memory management and high-level I/O libraries. 

Future grids will need to address the needs of application developers in two ways. They must 
provide programming models (supported by languages, libraries, and tools) that are appropriate for 
grid environments and a range of services (for security, fault detection, resource management, data 
access, communication, etc.) that programmers can call upon when developing applications. 

The purpose of both programming models and services is to simplify thinking about and implement- 
ing complex algorithmic structures, by providing a set of abstractions that hide details unrelated to the 
application, while exposing design decisions that have a significant impact on program performance 
or correctness. In sequential programming, commonly used programming models provide us with ab- 
stractions such as subroutines and scoping: in parallel programming, we have threads and condition 
variables (in shared-memory parallelism), message passing, distributed arrays, and single-assignment 
variables. Associated services ensure that resources are allocated to processes in a reasonable fashion, 
provide convenient abstractions for tertiary storage, and so forth. 

There is no consensus on what programming model is appropriate for a grid environment, although 
it seems clear that many models will be used. Table 3 summarizes some of the models that have been 
proposed: new models will emerge as our understanding of grid programming evolves. 

As Table 3 makes clear, one approach to grid programming is to adapt models that have already 
proved successful in sequential or parallel environments. For example, a grid-enabled distributed 
shared-memory (DSM) system would support a shared-memory programming model in a grid envi- 
ronment, allowing programmers to specify parallelism in terms of threads and shared-memory oper- 
ations.   Similarly, a grid-enabled MPI would extend the popular message-passing model [27]. and a 
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Model 
Datagram/stream 
communication 
Shared memory, 
multithreading 
Data parallelism 

Examples 
UDP. TCP, 
Multicast 
POSIX Threads 
DSM 
HPF. HPC++ 

Message passing        MPI. PVM 
Object-oriented CORBA, DCOM. 

Java RMI 
Remote procedure    DCE. ONC 
call 
High throughput       Condor. LSF, 

Nimrod 
Group ordered Isis, Totem 

Agents Aglets, 
Telescript 

Pros 
Low overhead 

High level 

Automatic 
parallelization 
High performance 
Support for 
large-system design 
Simplicity 

Ease of use 

Robustness 

Flexibilitv 

Cons 
Low level 

Scalability 

Restricted 
applicability 
Low level 
Performance 

Restricted 
applicability 
Restricted 
applicability 
Performance. 
scalability 
Performance. 
robustness 

Table 3: Potential grid programming models and their advantages and disadvantages. 

grid-enabled file system would permit remote files to be accessed via the standard UNIX application 
programming interface (API) [66]. These approaches have the advantage of potentially allowing ex- 
isting applications to be reused unchanged, but can introduce significant performance problems if the 
models in question do not adapt well to high-latency, dynamic, heterogeneous grid environments. 

Another approach is to build on technologies that have proven effective in distributed computing, 
such as Remote Procedure Call (RPC) or related object-based techniques such as the Common Ob- 
ject Request Broker Architecture (CORBA). These technologies have significant software engineering 
advantages, because their encapsulation properties facilitate the modular construction of programs 
and the reuse of existing components. However, it remains to be seen whether these models can sup- 
port performance-focused, complex applications such as teleimmersion or the construction of dynamic 
computations that span hundreds or thousands of processors. 

The grid environment can also motivate new programming models and services. For example, 
high-throughput computing systems, as exemplified by Condor [41] and Nimrod [1]. support problem- 
solving methods such as parameter studies in which complex problems are partitioned into many 
independent tasks. Group-ordered communication systems represent another model that is important 
in dynamic, unpredictable grid environments; they provide services for managing groups of processes 
and for delivering messages reliably to group members. Agent-based programming models represent 
another approach apparently well suited to grid environments: here, programs are constructed as 
independent entities that roam the network searching for data or performing other tasks on behalf of 
a user. 

A wide range of new services can be expected to arise in grid environments to support the devel- 
opment of more complex grid applications. In addition to grid analogs of conventional services such as 
file systems, we will see new services for resource discovery, resource brokering, electronic payments, 
licensing, fault tolerance, specification of use conditions, configuration, adaptation, and distributed 
system management, to name just a few. 
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4.4 End Users 

Most grid users, like most users of computers or networks today, will not write programs. Instead, they 
will use grid-enabled applications that make use of grid resources and services. These applications 
may be chemistry packages or environmental models that use grid resources for computing or data: 
problem-solving packages that help set up parameter study experiments [1]; mathematical packages 
augmented with calls to network-enabled solvers [17], [11]: or collaborative engineering packages that 
allow geographically separated users to cooperate on the design of complex systems. 

End users typically place stringent requirements on their tools, in terms of reliability, predictability, 
confidentiality, and usability. The construction of applications that can meet these requirements in 
complex grid environments represents a major research and engineering challenge. 

4.5 System Administrators 

The final group of users that we consider are the system administrators who must manage the infras- 
tructure on which computational grids operate. This task is complicated by the high degree of sharing 
that grids are designed to make possible. The user communities and resources associated with a par- 
ticular grid will frequently span multiple administrative domains, and new services will arise—such 
as accounting and resource brokering—that require distributed management. Furthermore, individ- 
ual resources may participate in several different grids, each with its own particular user community, 
access policies, and so on. For a grid to be effective, each participating resource must be administered 
so as to strike an appropriate balance between local policy requirements and the needs of the larger 
grid community. This problem has a significant political dimension, but new technical solutions are 
also required. 

The Internet experience suggests that two keys to scalability when administering large distributed 
systems are to decentralize administration and to automate trans-site issues. For example, names and 
routes are administered locally, while essential trans-site services such as route discovery and name 
resolution are automated. Grids will require a new generation of tools for automatically monitoring 
and managing many tasks that are currently handled manually. 

New administration issues that arise in grids include establishing, monitoring, and enforcing local 
policies in situations where the set of users may be large and dynamic; negotiating policy with other 
sites and users: accounting and payment mechanisms: and the establishment and management of mar- 
kets and other resource-trading mechanisms. There are interesting parallels between these problems 
and management issues that arise in the electric power and banking industries 114. [31]. [28]. 

5    Grid Architecture 

What is involved in building a grid? To address this question, we adopt a system architect's perspec- 
tive and examine the organization of the software infrastructure required to support the grid users, 
applications, and services discussed in the preceding sections. 

As noted above, computational grids will be created to serve different communities with widely 
varying characteristics and requirements. Hence, it seems unlikely that we will see a single grid 
architecture. However, we do believe that we can identify basic services that most grids will provide, 
with different grids adopting different approaches to the realization of these services. 

One major driver for the techniques used to implement grid services is scale. Computational 
infrastructure, like other infrastructures, is fractal, or self-similar at different scales. We have networks 
between countries, organizations, clusters, and computers: between components of a computer: and 
even within a single component.  However, at different scales, we often operate in different physical. 
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Comp. model I/O model Resource manag. Security 
Endsystem: 
Multithreading. Local I/O. Process creation OS kernel. 
automatic disk-striping OS signal delivery hardware 
parallelization. - OS scheduling 
Cluster (increased scale, reduced integration): 
Synchronous Parallel I/O Parallel process Shared 
communication. (e.g.. MPI-IO). creation, gang security 
distributed shared file systems scheduling, OS-level databases 
memory signal propagation 
Intranet (heterogene ity. separate administration, lack of global knowledge): 
Client/server. Distributed file Resource discovery, Network 
looselv synchronous: systems signal distribution security 
pipelines, coupling (DFS. HPSS). networks. (Kerberos) 
manager/worker databases high throughput 
Internet (lack of centralized control, geographical distribution, intl. issues): 
Collaborative Remote file access. Brokers, Trust dele- 
systems, remote digital libraries. trading. gation, public 
control, data data warehouses mobile code key. 
mining negotiation sandboxes 

Table 4: Computer systems operating at different scales. 

economic, and political regimes. For example, the access control solutions used for a laptop computer's 
system bus are probably not appropriate for a trans-Pacific cable. 

In this section, we adopt scale as the major dimension for comparison. We consider four types 
of systems, of increasing scale and complexity, asking two questions for each: What new concerns 
does this increase in scale introduce? And how do these new concerns influence how we provide basic 
services? These system types are as follows (see also Table 4): 

1. The ene! system provides the best model we have for what it means to compute, because it is 
here that most research and development efforts have focused in the past four decades. 

2. The cluster introduces new issues of parallelism and distributed management, albeit of homoge- 
neous systems. 

3. The intranet introduces the additional issues of heterogeneity and geographical distribution. 

4. The internet introduces issues associated with a lack of centralized control. 

An important secondary driver for architectural solutions is the performance requirements of the 
grid. Stringent performance requirements amplify the effect of scale because they make it harder 
to hide heterogeneity. For example, if performance is not a big concern, it is straightforward to 
extend UNIX file I/O to support access to remote files, perhaps via a HyperText Transport Protocol 
(HTTP) gateway [66]. However, if performance is critical, remote access may require quite different 
mechanisms—such as parallel transfers over a striped network from a remote parallel file system to a 
local parallel computer—that are not easily expressed in terms of UNIX file I/O semantics. Hence, a 
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high-performance wide area grid may need to adopt quite different solutions to data access problems. 
In the following, we assume that we are dealing with high-performance systems; systems with lower 
performance requirements are generally simpler. 

5.1 Basic Services 

We start our discussion of architecture by reviewing the basic services provided on conventional com- 
puters. We do so because we believe that, in the absence of strong evidence to the contrary, services 
that have been developed and proven effective in several decades of conventional computing will also 
be desirable in computational grids. Grid environments also require additional services, but we claim 
that, to a significant extent, grid development will be concerned with extending familiar capabilities 
to the more complex wide area environment. 

Our purpose in this subsection is not to provide a detailed exposition of well-known ideas but 
rather to establish a vocabulary for subsequent discussion. We assume that we are discussing a 
generic modern computing system, and hence refrain from prefixing each statement with "in general." 
"typically." and the like. Individual systems will, of course, differ from the generic systems described 
here, sometimes in interesting and important ways. 

The first step in a computation that involves shared resources is an authentication process, designed 
to establish the identity of the user. A subsequent authorization process establishes the right of the 
user to create entities called processes. A process comprises one or more threads of control, created 
for either concurrency or parallelism, and executing within a shared address space. A process can 
also communicate with other processes via a variety of abstractions, including shared memory (with 
semaphores or locks), pipes, and protocols such as TCP/IP. 

A user (or process acting on behalf of a user) can control the activities in another process— 
for example, to suspend, resume, or terminate its execution. This control is achieved by means of 
asynchronously delivered signals. 

A process acts on behalf of its creator to acquire resources, by executing instructions, occupying 
memory, reading and writing disks, sending and receiving messages, and so on. The ability of a 
process to acquire resources is limited by underlying authorization mechanisms, which implement a 
system's resource allocation policy, taking into account the user's identity, prior resource consumption, 
and/or other criteria. Scheduling mechanisms in the underlying system deal with competing demands 
for resources and may also (for example, in realtime systems) support user requests for performance 
guarantees. 

Underlying accounting mechanisms keep track of resource allocations and consumption, and pay- 
ment mechanisms may be provided to translate resource consumption into some common currency. 
The underlying system will also provide protection mechanisms to ensure that one user's computation 
does not interfere with another's. 

Other services provide abstractions for secondary storage. Of these, virtual memory is implicit, 
extending the shared address space abstraction already noted: file systems and databases are more 
explicit representations of secondary storage. 

5.2 End Systems 

Individual end systems—computers, storage systems, sensors, and other devices—are characterized by 
relatively small scale and a high degree of homogeneity and integration. There are typically just a few 
tens of components (processors, disks, etc.). these components are mostly of the same type, and the 
components and the software that controls them have been co-designed to simplify management and 
use and to maximize performance.   (Specialized devices such as scientific instruments may be more 
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significantly complex, with potentially thousands of internal components, of which hundreds may be 
visible externally.) 

Such end systems represent the simplest, and most intensively studied, environment in which to 
provide the services listed above. The principal challenges facing developers of future systems of this 
type relate to changing computer architectures (in particular, parallel architectures) and the need to 
integrate end systems more fully into clusters, intranets, and internets. 

State of the Art 

The software architectures used in conventional end systems are well known [61]. Basic services 
are provided by a privileged operating system, which has absolute control over the resources of the 
computer. This operating system handles authentication and mediates user process requests to acquire 
resources, communicate with other processes, access files, and so on. The integrated nature of the 
hardware and operating system allows high-performance implementations of important functions such 
as virtual memory and I/O. 

Programmers develop applications for these end systems by using a variety of high-level languages 
and tools. A high degree of integration between processor architecture, memory system, and compiler 
means that high performance can often be achieved with relatively little programmer effort. 

Future Directions 

A significant deficiency of most end-system architectures is that they lack features necessary for 
integration into larger clusters, intranets, and internets. Much current research and development is 
concerned with evolving system end architectures in directions relevant to future computational grids. 
To list just three: Operating systems are evolving to support operation in clustered environments, 
in which services are distributed over multiple networked computers, rather than replicated on even- 
processor [3]. [65]. A second important trend is toward a greater integration of end systems (computers, 
disks, etc.) with networks, with the goal of reducing the overheads incurred at network interfaces 
and hence increasing communication rates [22]. [35]. Finally, support for mobile code is starting to 
appear, in the form of authentication schemes, secure execution environments for downloaded code 
("sandboxes"), and so on [32]. [72]. [71]. [44]. 

The net effect of these various developments seems likely to be to reduce the currently sharp 
boundaries between end system, cluster, and intranet/internet, with the result that individual end 
systems will more fully embrace remote computation, as producers and/or consumers. 

5.3    Clusters 

The second class of systems that we consider is the cluster, or network of workstations: a collection 
of computers connected by a high-speed local area network and designed to be used as an integrated 
computing or data processing resource. A cluster, like an individual end system, is a homogeneous 
entity—its constituent systems differ primarily in configuration, not basic architecture—and is con- 
trolled by a single administrative entity who has complete control over each end system. The two 
principal complicating factors that the cluster introduces are as follows: 

1. Increased physical scale. A cluster may comprise several hundred or thousand processors, with 
the result that alternative algorithms are needed for certain resource management and control 
functions. 
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2. Reduced integration: A desire to construct clusters from commodity parts means that clusters 
are often less integrated than end systems. One implication of this is reduced performance for 
certain functions (e.g.. communication). 

State of the Art 

The increased scale and reduced integration of the cluster environment make the implementation of 
certain services more difficult and also introduce a need for new services not required in a single 
end system. The result tends to be either significantly reduced performance (and hence range of 
applications) or software architectures that modify and/or extend end-system operating systems in 
significant ways. 

We use the problem of high-performance parallel execution to illustrate the types of issues that 
can arise when we seek to provide familiar end-system services in a cluster environment. In a single 
(multiprocessor) end system, high-performance parallel execution is typically achieved either by using 
specialized communication libraries such as MPI or by creating multiple threads that communicate 
by reading and writing a shared address space. 

Both message-passing and shared-memory programming models can be implemented in a cluster. 
Message passing is straightforward to implement, since the commodity systems from which clusters 
are constructed typically support at least TCP/IP as a communication protocol. Shared memory 
requires additional effort: in an end system, hardware mechanisms ensure a uniform address space 
for all threads, but in a cluster, we are dealing with multiple address spaces. One approach to this 
problem is to implement a logical shared memory by providing software mechanisms for translating 
between local and global addresses, ensuring coherency between different versions of data, and so 
forth. A variety of such distributed shared-memory systems exist, varying according to the level at 
which sharing is permitted [76]. [24]. [53]. 

In low-performance environments, the cluster developer's job is done at this point; message-passing 
and DSM systems can be run as user-level programs that use conventional communication protocols 
and mechanisms (e.g.. TCP/IP) for interprocessor communication. However, if performance is im- 
portant, considerable additional development effort may be required. Conventional network proto- 
cols are orders of magnitude slower than intra-end-system communication operations. Low-latency, 
high-bandwidth inter-end-system communication can require modifications to the protocols used for 
communication, the operating system's treatment of network interfaces, or even the network interface 
hardware [70]. [56]. 

The cluster developer who is concerned with parallel performance must also address the problem 
of coscheduling. There is little point in communicating extremely rapidly to a remote process that 
must be scheduled before it can respond. Coscheduling refers to techniques that seek to schedule 
simultaneously the processes constituting a computation on different processors [23]. [63]. In certain 
highly integrated parallel computers, coscheduling is achieved by using a batch scheduler: processors 
are space shared, so that only one computation uses a processor at a time. Alternatively, the schedulers 
on the different systems can communicate, or the application itself can guide the local scheduling 
process to increase the likelihood that processes will be coscheduled [3]. [14]. 

To summarize the points illustrated by this example: in clusters, the implementation of services 
taken for granted in end systems can require new approaches to the implementation of existing services 
(e.g.. interprocess communication) and the development of new services (e.g.. DSM and coscheduling). 
The complexity of the new approaches and services, as well as the number of modifications required 
to the commodity technologies from which clusters are constructed, tends to increase proportionally 
with performance requirements. 

We can paint a similar picture in other areas, such as process creation, process control, and I/O. 
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Experience shows that familiar services can be extended to the cluster environment without too much 
difficulty, especially if performance is not critical; the more sophisticated cluster systems provide 
transparent mechanisms for allocating resources, creating processes, controlling processes, accessing 
files, and so forth, that work regardless of a program's location within the cluster. However, when 
performance is critical, new implementation techniques, low-level services, and high-level interfaces 
can be required [65]. [25]. 

Future Directions 

Cluster architectures are evolving in response to three pressures: 

1. Performance requirements motivate increased integration and hence operating system and hard- 
ware modifications (for example, to support fast communications). 

2. Changed operational parameters introduce a need for new operating system and user-level ser- 
vices, such as coscheduling. 

3. Economic pressures encourage a continued focus on commodity technologies, at the expense of 
decreased integration and hence performance and services. 

It seems likely that, in the medium term, software architectures for clusters will converge with 
those for end systems, as end-system architectures address issues of network operation and scale. 

5.4    Intranets 

The third class of systems that we consider is the intranet, a grid comprising a potentially large 
number of resources that nevertheless belong to a single organization. Like a cluster, an intranet can 
assume centralized administrative control and hence a high degree of coordination among resources. 
The three principal complicating factors that an intranet introduces are as follows: 

1. Heterogeneity: The end systems and networks used in an intranet are almost certainly of different 
types and capabilities. We cannot assume a single system image across all end systems. 

2. Separate administration: Individual systems will be separately administered: this feature intro- 
duces additional heterogeneity and the need to negotiate potentially conflicting policies. 

3. Lack of global knowledge: A consequence of the first two factors, and the increased number of 
end systems, is that it is not possible, in general, for any one person or computation to have 
accurate global knowledge of system structure or state. 

State of the Art 

The software technologies employed in intranets focus primarily on the problems of physical and 
administrative heterogeneity. The result is typically a simpler, less tightly integrated set of services 
than in a typical cluster. Commonly, the services that are provided are concerned primarily with the 
sharing of data (e.g.. distributed file systems, databases. Web services) or with providing access to 
specialized services, rather than with supporting the coordinated use of multiple resources. Access to 
nonlocal resources often requires the use of simple, high-level interfaces designed for "arm's-length" 
operation in environments in which every operation may involve authentication, format conversions, 
error checking, and accounting. Nevertheless, centralized administrative control does mean that a 
certain degree of uniformity of mechanism and interface can be achieved: for example, all machines 
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may be required to run a specific distributed file system or batch scheduler, or may be placed behind 
a firewall, hence simplifying security solutions. 

Software architectures commonly used in intranets include the Distributed Computing Environ- 
ment (DCE). DCOM. and CORBA. In these systems, programs typically do not allocate resources 
and create processes explicitly, but rather connect to established "services" that encapsulate hardware 
resources or provide defined computational services. Interactions occur via remote procedure call [33] 
or remote method invocation [55]. [36]. models designed for situations in which the parties involved 
have little knowledge of each other. Communications occur via standardized protocols (typically lay- 
ered on TCP/IP) that are designed for portability rather than high performance. In larger intranets, 
particularly those used for mission-critical applications, reliable group communication protocols such 
as those implemented by ISIS [7] and Totem [46] can be used to deal with failure by ordering the 
occurrence of events within the system. 

The limited centralized control provided by a parent organization can allow the deployment of 
distributed queuing systems such as Load Sharing Facility (LSF). Codine, or Condor, hence providing 
uniform access to compute resources. Such systems provide some support for remote management of 
computation, for example, by distributing a limited range of signals to processes through local servers 
and a logical signal distribution network. However, issues of security, payment mechanisms, and policy 
often prevent these solutions from scaling to large intranets. 

In a similar fashion, uniform access to data resources can be provided by means of wide area file 
system technology (such as DFS). distributed database technology, or remote database access (such as 
SQL servers). High-performance, parallel access to data resources can be provided by more specialized 
systems such as the High Performance Storage System [73]. In these cases, the interfaces presented 
to the application would be the same as those provided in the cluster environment. 

The greater heterogeneity, scale, and distribution of the intranet environment also introduce the 
need for services that are not needed in clusters. For example, resource discovery mechanisms may be 
needed to support the discovery of the name, location, and other characteristics of resources currently 
available on the network. A reduced level of trust and greater exposure to external threats may 
motivate the use of more sophisticated security technologies. Here, we can once again exploit the 
limited centralized control that a parent organization can offer. Solutions such as Kerberos [51] can be 
mandated and integrated into the computational mode], providing a unified authentication structure 
throughout the intranet. 

Future Directions 

Existing intranet technologies do a reasonable job of projecting a subset of familiar programming 
models and services (procedure calls, file systems, etc.) into an environment of greater complexity 
and physical scale, but are inadequate for performance-driven applications. We expect future de- 
velopments to overcome these difficulties by extending lighter-weight interaction models originally 
developed within clusters into the more complex intranet environment, and by developing specialized 
performance-oriented interfaces to various services. 

5.5    Internets 

The final class of systems that we consider is also the most challenging on which to perform network 
computing—internetworked systems that span multiple organizations. Like intranets, internets tend 
to be large and heterogeneous. The three principal additional complicating factors that an internet 
introduces are as follows: 
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1. Lack of centralized control: There is no central authority to enforce operational policies or to 
ensure resource quality, and so we see wide variation in both policy and quality. 

2. Geographical distribution: Internets typically link resources that are geographically widely dis- 
tributed. This distribution leads to network performance characteristics significantly different 
from those in local area or metropolitan area networks of clusters and intranets. Not only does 
latency scale linearly with distance, but bisection bandwidth arguments [18]. [26] suggest that 
accessible bandwidth tends to decline linearly with distance, as a result of increased competition 
for long-haul links. 

3. International issues: If a grid extends across international borders, export controls may constrain 
the technologies that can be used for security, and so on. 

State of the Art 

The internet environment's scale and lack of central control have so far prevented the successful 
widespread deployment of grid services. Approaches that are effective in intranets often break down 
because of the increased scale and lack of centralized management. The set of assumptions that one 
user or resource can make about another is reduced yet further, a situation that can lead to a need 
for implementation techniques based on discovery and negotiation. 

We use two examples to show how the internet environment can require new approaches. We first 
consider security. In an intranet, it can be reasonable to assume that every user has a preestablished 
trust relationship with every resource that he wishes to access. In the more open internet environment, 
this assumption becomes intractable because of the sheer number of potential process-to-resource 
relationships. This problem is accentuated by the dynamic and transient nature of computation, which 
makes any explicit representation of these relationships infeasible. Free-flowing interaction between 
compulations and resources requires more dynamic approaches to authentication and access control. 
One potential solution is to introduce the notion of delegation of trust into security relationships: that 
is. we introduce mechanisms that allow an organization A to trust a user U because user I" is trusted 
by a second organization B. with which A has a formal relationship. However, the development of 
such mechanisms remains a research problem. 

As a second example, we consider the problem of coscheduling. In an intranet, it can be reasonable 
to assume that all resources run a single scheduler, whether a commercial system such as LSF or a 
research system such as Condor. Hence, it may be feasible to provide coscheduling facilities in support 
of applications that need to run on multiple resources at once. In an internet, we cannot rely on the 
existence of a common scheduling infrastructure. In this environment, coscheduling requires that a 
grid application (or scheduling service acting for an application) obtain knowledge of the scheduling 
policies that apply on different resources and influence the schedule either directly through an external 
scheduling API or indirectly via some other means [16]. 

Future Directions 

Future development of grid technologies for internet environments will involve the development of 
more sophisticated grid services and the gradual evolution of the services provided at end systems 
in support of those services. There is little consensus on the shape of the grid architectures that 
will emerge as a result of this process, but both commercial technologies and research projects point 
to interesting potential directions. Three of these directions—commodity technologies. Legion, and 
Globus—are explored in detail in later chapters. We note their key characteristics here but avoid 
discussion of their relative merits. There is as yet too little experience in their use for such discussion 
to be meaningful. 
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The commodity approach to grid architecture adopts as the basis for grid development the vast 
range of commodity technologies that are emerging at present, driven by the success of the Internet 
and Web and by the demands of electronic information delivery and commerce. These technologies 
are being used to construct three-tier architectures, in which middle-tier application servers mediate 
between sophisticated back-end services and potentially simple front ends. Grid applications are 
supported in this environment by means of specialized high-performance back-end and application 
servers. 

The Legion approach to grid architecture seeks to use object-oriented design techniques to simplify 
the definition, deployment, application, and long-term evolution of grid components. Hence, the Legion 
architecture defines a complete object model that includes abstractions of compute resources called 
host objects, abstractions of storage systems called data vault objects, and a variety of other object 
classes. Users can use inheritance and other object-oriented techniques to specialize the behavior of 
these objects to their own particular needs, as well as develop new objects. 

The Globus approach to grid architecture is based on two assumptions: 

1. Grid architectures should provide basic services, but not prescribe particular programming mod- 
els or higher-level architectures. 

2. Grid applications require services beyond those provided by today's commodity technologies. 

Hence, the focus is on defining a "toolkit" of low-level services for security, communication, resource 
location, resource allocation, process management, and data access. These services are then used to 
implement higher-level services, tools, and programming models. 

In addition, hybrids of these different architectural approaches are possible and will almost certainly 
be addressed; for example, a commodity three-tier system might use Globus services for its back end. 

A wide range of other projects are exploring technologies of potential relevance to computational 
grids, for example. WebOS [67]. Charlotte [6], UFO [2]. ATLAS [5]. Javelin [15]. Popcorn [10]. and 
Globe [69]. 

6    Research Challenges 

What problems must be solved to enable grid development? In preceding sections, we outlined what 
we expect grids to look like and how we expect them to be used. In doing so. we tried to be as 
concrete as possible, with the goal of providing at least a plausible view of the future. However, there 
are certainly many challenges to be overcome before grids can be used as easily and flexibly as we have 
described. In this section, we summarize the nature of these challenges, most of which are discussed 
in much greater detail in the chapters that follow. 

6.1     The Nature of Applications 

Early metacomputing experiments provide useful clues regarding the nature of the applications that 
will motivate and drive early grid development. However, history also tells us that dramatic changes in 
capabilities such as those discussed here are likely to lead to radically new ways of using computers— 
ways as yet unimagined. Research is required to explore the bounds of what is possible, both within 
those scientific and engineering domains in which metacomputing has traditionally been applied, and 
in other areas such as business, art. and entertainment. 
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6.2 Programming Models and Tools 

As noted in Section 4. grid environments will require a rethinking of existing programming models 
and. most likely, new thinking about novel models more suitable for the specific characteristics of 
grid applications and environments. Within individual applications, new techniques are required 
for expressing advanced algorithms, for mapping those algorithms onto complex grid architectures, 
for translating user performance requirements into system resource requirements, and for adapting 
to changes in underlying system structure and state. Increased application and system complexity 
increases the importance of code reuse, and so techniques for the construction and composition of 
grid-enabled software components will be important. Another significant challenge is to provide tools 
that allow programmers to understand and explain program behavior and performance. 

6.3 System Architecture 

The software systems that support grid applications must satisfy a variety of potentially conflicting 
requirements. A need for broad deployment implies that these systems must be simple and place 
minimal demands on local sites. At the same time, the need to achieve a wide variety of complex, 
performance-sensitive applications implies that these systems must provide a range of potentially 
sophisticated services. Other complicating factors include the need for scalability and evolution to 
future systems and services. It seems likely that new approaches to software architecture will be 
needed to meet these requirements—approaches that do not appear to be satisfied by existing Internet, 
distributed computing, or parallel computing technologies. 

6.4 Algorithms and Problem-Solving Methods 

Grid environments differ substantially from conventional uniprocessor and parallel computing systems 
in their performance, cost, reliability, and security characteristics. These new characteristics will 
undoubtedly motivate the development of new classes of problem-solving methods and algorithms. 
Latency-tolerant and fault-tolerant solution strategies represent one important area in which research 
is required [5]. [6]. [10]. Highly concurrent and speculative execution techniques may be appropriate 
in environments where many more resources are available than at present. 

6.5 Resource Management 

A defining feature of computational grids is that they involve sharing of networks, computers, and 
other resources. This sharing introduces challenging resource management problems that are be- 
yond the state of the art in a variety of areas. Many of the applications described in later chapters 
need to meet stringent end-to-end performance requirements across multiple computational resources 
connected by heterogeneous, shared networks. To meet these requirements, we must provide im- 
proved methods for specifying application-level requirements, for translating these requirements into 
computational resources and network-level quality-of-service parameters, and for arbitrating between 
conflicting demands. 

6.6 Security 

Sharing also introduces challenging security problems. Traditional network security research has 
focused primarily on two-party client-server interactions with relatively low performance requirements. 
Grid applications frequently involve many more entities, impose stringent performance requirements, 
and involve more complex activities such as collective operations and the downloading of code. In 
larger grids, issues that arise in electronic markets become important.  Users may require assurance 
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and licensing mechanisms that can provide guarantees (backed by financial obligations) that services 
behave as advertised [37]. 

6.7 Instrumentation and Performance Analysis 

The complexity of grid environments and the performance complexity of many grid applications make 
techniques for collecting, analyzing, and explaining performance data of critical importance. Depend- 
ing on the application and computing environment, poor performance as perceived by a user can be 
due to any one or a combination of many factors: an inappropriate algorithm, poor load balancing, in- 
appropriate choice of communication protocol, contention for resources, or a faulty router. Significant 
advances in instrumentation, measurement, and analysis are required if we are to be able to relate 
subtle performance problems in the complex environments of future grids to appropriate application 
and system characteristics. 

6.8 End Systems 

Grids also have implications for the end systems from which they are constructed. Today's end systems 
are relatively small and are connected to networks by interfaces and with operating system mechanisms 
originally developed for reading and writing slow disks. Grids require that this model evolve in two 
dimensions. First, by increasing demand for high-performance networking, grid systems will motivate 
new approaches to operating system and network interface design in which networks are integrated 
with computers and operating systems at a more fundamental level than is the case today. Second, 
by developing new applications for networked computers, grids will accelerate local integration and 
hence increase the size and complexity of the end systems from which they are constructed. 

6.9 Network Protocols and Infrastructure 

Grid applications can be expected to have significant implications for future network protocols and 
hardware technologies. Mainstream developments in networking, particularly in the Internet commu- 
nity, have focused on best-effort service for large numbers of relatively low-bandwidth flows. Many 
of the future grid applications discussed in this book require both high bandwidths and stringent 
performance assurances. Meeting these requirements will require major advances in the technologies 
used to transport, switch, route, and manage network flows. 

7    Summary 

This chapter has provided a high-level view of the expected purpose, shape, and architecture of 
future grid systems and. in the process, sketched a road map for more detailed technical discussion in 
subsequent chapters. The discussion was structured in terms of six questions. 

Why do ire need computational grids? We explained how grids can enhance human creativity by. 
for example, increasing the aggregate and peak computational performance available to important 
applications and allowing the coupling of geographically separated people and computers to support 
collaborative engineering. We also discussed how such applications motivate our requirement for a 
software and hardware infrastructure able to provide dependable, consistent, and pervasive access to 
high-end computational capabilities. 

What types of applications will grids be used for? We described five classes of grid applications: 
distributed supercomputing. in which many grid resources are used to solve very large problems: high 
throughput, in which grid resources are used to solve large numbers of small tasks: on demand, in 
which grids are used to meet peak needs for computational resources: data intensive, in which the 
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focus is on coupling distributed data resources: and collaborative, in which grids are used to connect 
people. 

Who will use grids? We examined the shape and concerns of four grid communities, each supporting 
a different type of grid: a national grid, serving a national government: a private grid, serving a 
health maintenance organization; a virtual grid, serving a scientific collaboratory; and a public grid, 
supporting a market for computational services. 

How will grids be used? We analyzed the requirements of five classes of users for grid tools and 
services, distinguishing between the needs and concerns of end users, application developers, tool 
developers, grid developers, and system managers. 

What is involved in building a grid? We discussed potential approaches to grid architecture, 
distinguishing between the differing concerns that arise and technologies that have been developed 
within individual end systems, clusters, intranets, and internets. 

What problems must be solved to enable grid development'? We provided a brief review of the 
research challenges that remain to be addressed before grids can be constructed and used on a large 
scale. 

Further Reading 

For more information on the topics covered in this chapter, see www.mkp.com/grids and also the 
following references: 

• A series of books published by the Corporation for National Research Initiatives [29]. [30]. [31]. 
[28] review and draw lessons from other large-scale infrastructures, such as the electric power 
grid, telecommunications network, and banking system. 

• Catlett and Smarrs original paper on metacomputing [13] provides an early vision of how high- 
performance distributed computing can change the way in which scientists and engineers use 
computing. 

• Papers in a 1996 special issue of the International Journal of Supercomputer Applications [19] 
describe the architecture and selected applications of the I-WAY metacomputing experiment. 

• Papers in a 1997 special issue of the Communications of the ACM [62] describe plans for a 
National Technology Grid. 

• Several reports bv the National Research Council touch upon issues relevant to grids [49]. [50]. 
[48]. 

• Birman and van Renesse [8] discuss the challenges that we face in achieving reliability in grid 
applications. 
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Abstract. Networks of workstations (NOWs) have become important 
and cost-effective parallel platforms for scientific computations. In prac- 
tice, a NOW system is heterogeneous and non-dedicated. These two 
unique factors make scheduling policies on multiprocessor/multicomputer 
systems unsuitable for NOWs, but the coscheduling principle is still an 
important basis for parallel process scheduling in these environments. 
The main idea of this technique is to schedule the set of tasks composing 
a parallel application at the same time, to increase their communication 
performance. In this article we present an explicit coscheduling algorithm 
implemented in a Linux NOW. of PVM distributed tasks, based on Real 
Time priority assignment. The main goal of the algorithm is to execute 
efficiently distributed applications without excessively damaging the re- 
sponse time of local tasks. Extensive performance analysis as well as 
studies of the parameters and overheads involved in the implementation 
demonstrated the applicability of the proposed algorithm. 

1    Introduction 

Parallel and distributed computing in a network of workstations (NOWs) re- 
ceives ever increasing attention. Recently, a research goal is to build a NOW 
that runs parallel programs with performance equivalent to a MPP (Massively 
Parallel Processor) and executes sequential programs as a dedicated uniprocessor 
too. Nevertheless, two issues must be addressed: how to coordinate the simul- 
taneous execution of the processes of a parallel job. and how to manage the 
interaction between parallel and local user jobs. 

The studies in [1] indicate that the workstations in a NOW are normally 
underloaded. Basically, there are two methods of making use of these CPU idle 
cycles, task migration [2,3] and job scheduling [4-6]. In a NOW, in accordance 
with the research realized by Arpaci [7]. task migration overheads and the un- 
predictable behavior of local users may lower the effectiveness of this method. 

* This work was supported by the CICYT under contract TIC98-0433 
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Our research was focussed on the approach of keeping both local and parallel 
jobs together and effective, and efficiently scheduling them. 

A NOW system is heterogeneous and non-dedicated. The heterogeneity can 
be modeled by the Power weight [8]. As for the non-dedicated feature, a mech- 
anism must be provided to ensure that no extra context switch overheads due 
to synchronization delays are introduced. Outerhout's solution for timeshared 
multiprocessor systems was coscheduling [9]. Under this traditional form of 
coscheduling, the processes constituting a parallel job are scheduled simulta- 
neously across as many nodes of a multiprocessor as they require. 

Explicit coscheduling [9,5] ensures that scheduling of communicating jobs is 
coordinated by constructing a static global list of the order in which jobs should 
be scheduled; a simultaneous global context switch is then required in all the 
processors. Zhang [4], based on the coscheduling principle, has implemented the 
so-called "self-coordinated local scheduler", which guarantees the performance 
of both local and parallel jobs in a NOW by a time-sharing and priority-based 
operating system. He varies the priority of the processes according to the power 
usage agreement between local and parallel jobs. 

In contrast with Zhang's study, a real implementation of explicit coscheduling 
in a NOW is presented in this article; so that the user of the parallel machine 
has all the computing power of the NOW available during a short period of time 
with the main aim of obtaining good performance of distributed tasks without 
excessively damaging the local ones. 

In section 2, the environment DTS (Distributed Scheduler) where the cosche- 
duling implementation is built will be introduced. In section 3, our explicit 
coscheduling algorithm of PVM distributed tasks in a Linux NOW is presented. 
Also, a synchronization algorithm that improves the performance of the message 
passing in distributed tasks is proposed. In section 4. the good behavior of the 
implemented algorithms is checked by means of measuring the execution time 
on both synthetic applications and NAS benchmarks: in addition, the response 
time of local jobs and other parameters and overheads of special interest are 
measured. Finally, the last section includes our conclusions and a description of 
the future work. 

2    DTS Environment 

We are interested in assigning a period of time to distributed tasks and an- 
other to interactive ones, and varying these dynamically according to the local 
load average of a NOW. Also, our aim is to avoid modifying the kernel source, 
because of the need of a portable system. Our solution consists of promoting 
the distributed tasks (initially timesharing) to real-time. Furthermore, in each 
workstation all the distributed tasks were put in the same group of processes: it 
allows control of their execution by means of stop and resume signals. In such 
a way that, this splits the CPU time in two different periods, the parallel slice 
and the interactive one. 
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The implemented system, called DTS, which is an improved version of the 
original described in [10] is composed of three types of modules, the Sched- 
uler, the Load and the Console. The Scheduler and the Load are composed of 
distributed processes running on each active workstation. The function of each 
Scheduler is the dynamic variation of the amount of CPU cycles exclusively as- 
signed to execute distributed tasks (PS: Parallel Slice), and the amount of time 
assigned to local tasks (IS: Interactive Slice). The Load processes collect the 
interactive load on every workstation. The Console can be executed from any 
node of the NOW and is responsible for managing and controlling the system. 
For notation convenience the set of active nodes in the NOW are called VM 
(Virtual Machine), (see Figure 1). 

- NODt^ 

-*■    Communication 
-».    Creation 

DTS environment" 

(FVM.TASKk NODEi ( LOCAL.TASK; 

---("Scheduler) 

C    Load      "T 

Fig. 1. DTS environment. 

Our environment is started running automatically by the pvm environment. 
In each workstation composing our VM. the pvmd shell script has been modified 
as follows: the sentence "exec $PVM-ROOT/lib/pvmd3 $@" has been changed 
to "exec $PVM-ROOT/lib/scheduler $@". This way. when the workstation is 
added/activated to the virtual machine (even if it is the first) from the pvm 
console, the Scheduler is executed. 

3    Coscheduling Implementation 

In this section the coscheduling algorithm implemented over the DTS's sche- 
duler daemon is explained. Furthermore, some improvements in communication 
performance of the system are presented with the addition of a synchronization 
algorithm of the distributed tasks. 
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3.1     Coscheduling Algorithm 

The coscheduling algorithm is shown in the Figure 2. 

Scheduler 

set PRI{ Scheduler) = ((max(rt-pnority)) and SCHED JIFO) 
fork&exec(Load) 
fork&exec(pt;md) 
set PRl(pvmd) = ((max(rt.pnoniy) - 1) and SCHEDJtR) 
set PRI(Loftd) = ((m&x{rt.priority) - 2) and SCHEDJIFO) 
set pvmd leader of pvmJasks 

sync_p: 
yvhi\e(pvmAasks) do 

sleep(PS) 
signaLstop (pvmAasks) 
sleep(IS) 
signaLresume (pvmJasks) 

end/*\vhile*/ 

Fig. 2. Coscheduling algorithm 

At the beginning of execution, the Scheduler, which has root permissions, 
promotes itself to Real Time class (initially time shared). After that, it forks 
and executes Load and pvmd (the pvm daemon), and also promotes pvmd and 
Load to -1 and -2 Real Time priority lower than Scheduler respectively. Next. 
Scheduler, sets pvmd to become the leader of a new group of processes (denoted 
by pvm.tasks; this group will be composed of all the pvm tasks that pvmd will 
create). 

The scheduling policy of every process (SCHED-FIFO or SCHED-RR) is 
shown in the algorithm too, and denotes a FIFO or Round Robin scheduling 
respectively. Scheduler and Load have a FIFO policy because of their need to 
finish their work completely before they release the CPU. On the other hand. 
pvmd can block waiting for the receipt of an event, and meanwhile grant the 
CPU to another process, perhaps at the same priority level (a pvm task). For 
this reason, the scheduling policy has to be Round Robin. 

Following this, the Scheduler enters in a loop where each iteration takes IP 
(Iteration Period) ms, where IP = PS + IS. This loop stops when there are 
no more pvm tasks (including the pvmd). This occurs when the workstation is 
deleted from the pvm console. 

Thus, after the Parallel Slice (PS), all the Schedulers in the YM stop all the 
pvm tasks by sending a STOP signal to the group of PYM processes leadered 
by pvmd. After that, they are resumed at the end of the interactive slice by 
sending them a CONTINUE signal. Because the distributed tasks are running 
in real-time class, they have a global priority higher than the interactive ones. 
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Thus, when they are resumed, they take control of the CPU. In this way, an 
interval of execution is assigned to distributed tasks and other interval (can be 
different) to interactive ones. Figure 3 shows the behavior of the DTS scheduler: 
each time the Scheduler is executed (during an insignificant time), it concedes 
the CPU alternatively to the distributed (PS period) and to the interactive (IS 
period) tasks. 

Scheduler 
DTS 

Distributed 
Tasks 

Interactive 
Tasks 

Prio ity 

n z z Z Z rz rz z 
■ fcät fcMifcs! 

:   PS is; 
Time (ms) 

IP ip IP 

Fig. 3. DTS environment behavior 

3.2    Scheduler Synchronization 

Only the algorithm of each Scheduler that runs in the YM has been explained, 
but how are they synchronized to execute the parallel and the interactive slice at 
the same time and how are these slices modified according to the Load Average 
in the VM? Figure 4 shows the schematic algorithm that has been used to solve 
these two questions. 

The tasks composing a distributed' application can have basically CPU or 
message passing intensive phases. In the first case, it is unnecessary to syn- 
chronize the tasks. On the other hand, in the second case, the synchronization 
between the communication tasks can increase the global performance of the 
distributed application [7]. For this reason, DTS has two different modes of ope- 
ration. In the Dynamic mode, the PS and IS periods are synchronized over all 
the distributed tasks, whereas in the Distributed mode, the CPU intensive tasks 
are not synchronized at all. 

Every Load Interval (LI), all the Load processes collect the real CPU queue 
length (qj). The work done by Ferrary [11] shows that the length of the ready 
queue is a good index for measuring the load of a workstation. After N (Number 
of LI intervals of passed history to take into account) the Load Index, denoted 
as Qi, is computed and a message containing the load is sent to the Console. 
Exponential smoothing is used to compute the Load Index, defined as follows: 
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Loady VMj € VM 
i = 0, <#_!=() 
Each LI interval do 

collect (g,) 
collect (Net-Activity) 
compute(Q^) 
if (++i mod(N) == 0) 

if (Net-Activity < Network JTreshdld) 
set MODEJDTS = DISTRIBUTED 
compute(P SkIS) 
set PSkIS 

else 
set MODE-DTS = DYNAMIC 
if (\Q3i ~ Qi-il < LoadJTreshold)) 

send(Conso/e.<5j) 

Console: Node Master 
if (MODE_DTS==DYNAMIC) 

while(timeout)do 
for each Mj € I'M async_receive(Qj) 

compute(RL A,P Ski S) 
broadcast (PSkIS) 

if (MODE-DTS == DYNAMIC) 
async_receive(PS&/S) 
set PSkIS 
goto sync-p 

Fig. 4. Synchronization Algorithm. Console is in the node master. There is a Load and 
Scheduler module in each node of the \"M 

Q< = Q,-_1e-
p + «?,-(l-e-p);!>l, (1) 

where Qt-\ is the last computed index, g,- is the real CPU queue and P = ■£*. 
Taking into account the studies done by Ferrari [11]. a LI of 100 ms and A' of 
10 has been chosen. 

Note that when Load collects qi, the distributed tasks are stopped, waiting 
out of the Ready queue. For this reason, the distributed tasks are not computed. 
In another situation, as for example systems where the priority of distributed 
tasks is increased and decreased periodically, the need to distinguish between 
distributed and interactive tasks adds a great overhead to the system. 

In Figure 4 is important to observe how DTS activates automatically either 
the DISTRIBUTED or the DYNAMIC mode of operation in each workstation. 
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depending on the network activity {Net.Activity). The network activity is the 
number of messages sent or received every Ar * LI intervals by the pvmd. The 
behavior of the nodes which operates in DISTRIBUTED or DYNAMIC mode is 
explained separately below. 

One centralized algorithm has been implemented, due basically to perfor- 
mance requirements of the local applications. On the other hand, if the algo- 
rithm was distributed, it would reduce the performance of the interactive tasks 
and would increase the network activity due to the high activity of the Load 
module, for example sending the load index of each node to all the VM. 

Dynamic Mode In the reception of the Load indexes from all the active nodes 
or after a timeout, the Console computes the Relative Load Average (RLA), a 
metric used in DYNAMIC mode to fix the parallel and interactive slice on each 
workstation. The RLA is defined as follows: 

RLA = 
Qi 

Mj(-4) 

NW 
(2) 

where Q\ is the load index of workstation j, NW the number of workstations in 
the VM and Wj{A) the power weight of workstation j. The power weight [8] is 
defined as follows: 

Wj(A) = 
Sj(A) 

m,ax™{Sk(A)}- 
1...NW (3) 

where Sj{A) is the speed of the workstation Mj to solve an application of size A 
on a dedicated system. Nevertheless, the experimental results in [8] show that if 
applications fit in the main memory, the power weight differences, using several 
applications, are insignificant. 

Table 1, which shows the relation between the RLA, PS and IS, is used 
to compute the PS and 75. The values of PS and IS shown in the table are 
percentages of the IP period. 

Table 1. Relation between RLA. PS and IS 

RLA IS PS 
0<   RLA <0.25 10 90 

0.25< RLA <0.5 20 80 
0.5< RLA <0.75 30 70 
0.75< RLA   <1 40 60 
K. RLA <1.25 50 50 

1.25< RLA <1.5 60 40 
1.5<  RLA <1.75 70 30 
1.75< RLA    <2 80 20 

2<    RLA 90 10 
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The Console sends PS and 75 to all the Schedulers modules by a broadcast 
message. Broadcast delivery has been chosen due to the high cost of multicasting 
or sending a message separately to each node of the VM. On asynchronous 
reception (done by a message handler), each Scheduler process sets its parallel 
and interactive slices and jumps to a predetermined address, the label sync.p 
(synchronization point) in the algorithm of Figure 2. 

Distributed Mode Each workstation executing in this mode does not exchange 
many messages, the communication can even be null. Therefore, synchronization 
is not required. The only factor to take into account is the efficient share of the 
CPU between the distributed and local tasks, so that each workstation sets the 
PS and IS slices according to its own sequential workload. Each node computes 
these values according to Table 1 too, but substituting RLA for Q, (the Load 
Index). 

4    Experimentation 

Our experimental environment is composed of eight 350 MHz Pentium with 128 
MB of memory and 512 KB of cache. All of them are connected through an Eth- 
ernet network of 100Mbps bandwidth and a minimal latency in the order of 0.1 
ms. All our parallel experimentation was carried out in a non dedicated environ- 
ment with an owner workload (defined as the averaged ready queue length) of 
0.5 (Light). 1 (Medium) and 2 (Heavy). Workload characterization was carried 
out by means of running a variable number of processes in background, represen- 
tatives of the typical programs of personal workstations. The performance of the 
rescheduling implementation was evaluated by running three kernel benchmarks 
from the XAS parallel benchmarks suite [12]: ep, an embarrassingly application, 
is. an integer sorting parallel application and mg. a parallel application that 
solves the Poisson problem using multi-grid iterations. Also, two synthetic ap- 
plications, sinring and sintree were implemented, representative of two types of 
communication patterns. The first implements a logical ring (see Figure 5(a)). 
and the second attends for the communication of one to vary, and vary to one 
(see Figure 5(b)). In both applications, every node executes different processes 
sequentially during a fixed period of time, which is an input argument (1 ms by 
default). The number of iterations of both problems is also an input argument. 
Table 2 shows the benchmarks parameters used in the experimentation and the 
execution times obtained with PVM. 

Two different performance indexes are used: 

- Gain (G): This metric was used for evaluating the performance of our DTS 
system with respect to the original PYM. The gain is defined as follows: 

G^^JJL {4) 
-* sched 
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® -0 

S3 

(a) 

Fig. 5. benchmarks: sinring (a) and sintree (b) 

Table 2. Results obtained with PVM version 3.4.0 

Bench. Problem Size PVM (sec) 
Light Medium Heavy 

ep 2'J8 202 244 694 

is 2-3-[0..2la] 126 149 253 
mg 256x256x256 645 1336 1976 

sintree 20000 iterations 92 160 210 
sinring 80000 iterations 203 255 377 

where Tpvm (in seconds) is the execution time of one application in the 
original PVM environment and Tsched (in seconds) is the execution time of 
the same application in the DTS system. 
Local Overhead (LO): This metric was used to quantify the local workload 
overhead introduced by the execution of the parallel applications. One of the 
scripts used for the simulation of the Heavy workload(a compilation process) 
was taken as a reference. The LO metric is defined as follows: 

LO = 
ETn ondedicated ■ET, dedicated 

(5) 
■&-1 dedicated 

where ETdedjcnted is the execution time spent by the compilation process 
in a dedicated workstation (86 s), and ETnondedicattd is the execution time 
obtained by executing the script together with parallel applications. 

4.1    Network Threshold 

As the algorithm of Figure 4 shows, depending on the value of the network 
threshold, DTS activates the Dynamic or the Distributed mode of operation. In 
this section, the best threshold value has been studied. The results shown in the 
table 3 were obtained with our synthetic benchmark, sinring. whose network and 
CPU activity was under our control, since the sequential time of every process 
is an input argument of the benchmark. The experimentation was carried out 
with a medium owner workload. 

The network activity of every node, showed in the column called Net-Activity. 
was obtained by measuring the average number of packets received and delivered 
by the pvm daemon. Table 3 shows the DTS gain, calculated in accordance with 
the formula 4. obtained with our benchmark with two different values of the 
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Table 3. DTS Gain according to the network threshold value 

Bechmarks Net .activity Network Threshold 

0 300 600 900 1200 1500 

sinring 200 0.95 1.12 1.23 1.22 1.31 1.24 

sinring 990 1.42 1.41 1.28 1.19 0.94 0.93 

network activity when the threshold was varied between 0 and 1500 calls per 
second. As was expected, the results depend on the value of the threshold and the 
network activity of the benchmark. For a low communication benchmark case is 
better a high threshold whereas for a high communication benchmark is better 
a low threshold. Taking into account the above results, we have implemented 
DTS with a variable network threshold defined by the user. 

4.2    DTS Performance 

Table 4 shows the gain obtained in the execution of the three NAS benchmarks 
when they are executed in the DTS environment and with two different values 
of the IP period. 100 ms and 1000 ms. Table 5 shows the Local overhead in 
the execution of a compilation script when it is executed together with different 
parallel benchmarks. The behavior of the DTS environment can be determined 
comparing these two tables. 

Table 4. Scheduler results 

Bench. Gain 
IP = 100ms IP=1000ms 

Light Medium Heavy Light Medium. Heavy 

ep 0.91 1.13 1.26 0.96 1.14 1.24 
is 0.99 1.09 1.12 1.01 1.15 1.21 

mg 0.95 1.4 1.53 0.97 1.43 1.51 

Table 5. Local Overhead obtained with DTS environment 

Bench. Local Overhead 
IP=100 ms IP=1000 ms 

ep 2.25 2.65 
is 0.75 0.80 

mg 1.12 1.17 

First of all. it is important to determine the IP value. An IP of 1000 ms 
increases the local overhead of interactive local tasks (see Table 5) even if there 
is a light distributed workload. On the other hand, a value of less than 100 ms 
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increases the overhead produced by the addition of context switches. Taking 
these two considerations into account, an IP value of 100 ms was chosen and it 
is used in the rest, of the article. 

From Table 4, it can be observed that in the ep case, a computing intensive 
benchmark, the results obtained in DTS with a light load are worse than in the 
PVM due to the additional overhead introduced by the DTS. On the other hand, 
since the DTS assigns to ep a better percentage of time than the PVM in the 
heavy case, the results are better. 

Globally, for high message passing applications, is and mg. better results 
were obtained due to the synchronization between periods. 

In general, the DTS environment gains with respect to the original PVM in 
the cases when there is almost some local load. Obviously, this gain is at the 
expense of the local overhead introduced by DTS environment as shown in Table 
5, which, with the exception of the computing intensive distributed tasks, is very 
low and even it is reduced (is case). 

4.3    Local Load Measurements 

The performance of the distributed tasks can be improved at expense of a mo- 
derate local overhead, but how is the response time of the local applications 
affected? 

With the aim of answering this question, comparison was made with the 
average response time of an implemented local benchmark which is executed 
jointly with one of the distributed benchmarks. The local benchmark continu- 
ously obtains the status of the standard output for printing by means of the 
select system call. The distributed benchmarks used were the sintree and sinring 
(message passing intensives) and ep (CPU bound). Table 6, shows the average 
and the maximum response time (max) in microseconds of three benchmarks, 
obtained in the two environments. 

Table 6. Response time measurements (in fis). In the DTS case, IP = 100 ms 

Bench. PVM DTS 
average\   max average max 

sinring 6.13 201 5.93 247 
sintree 6.01 454 5.94 477 

ep 15.65 18043.7 29.81 20037.5 

Table 6 shows that in any case the DTS system increases the response time 
of the local benchmark excessively. It is only slightly significant in the case 
of ep, but this response time overhead was not appreciated by the local user. 
Approximately the 98% of the collected samples were 5 or 6 /us (the response 
time of the select o.s. system call used in normal conditions), and only the 25c 
take higher values (due to the execution of the distributed benchmark), that 
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increases significantly the average. We can conclude that with an IP of 100 ms 
the overhead added for the distributed tasks does not damage the response time 
of local applications excessively. 

4.4 Coscheduling Skew 

The method used in implementing coscheduling is delivered by broadcasting a 
short message to all the nodes in the cluster. The PS and IS intervals must be 
synchronized between two pair of nodes but, due to the synchronization algo- 
rithm, some skew always exists between them. The coscheduling skew (6) is the 
maximum out of phase between two arbitrary nodes, formally: 

S = max (broadcast) — min(broadcast) (6) 

where max (broadcast) and min (broadcast) are the maximum and minimum time 
in sending a short broadcast message. We have mesured a coscheduling skew (6) 
of 0.1 ms with the aid of the lmbench [13] benchmark. This value is insignificant 
in relation to the 100 ms of the IP interval. Thus, the coscheduling skew has no 
significant influence on the performance of the DTS system. 

4.5 Context Switches 

With the help of an implemented program (named getcontext) the context switch 
cost was measured in each workstation in function of the process size. The work 
done by getcontext was simulated as the summing up of a large size array before 
passing on one token (a short message) to the next process. The processes (a 
variable quantity) were connected in a ring of Unix pipes. The summing was 
an unrolled loop of about 2.7 thousand instructions. The effect was that both 
the data and the instruction cache was polluted to an extent before the token 
was passed on. Passing the size of a benchmark to getcontext as argument, it 
computed the context switch costs of that benchmark. 

Table 7 shows the sizes of the measured benchmarks, ep and sinring, and 
their correspondent context switch costs. The benchmarks that fit in the main 
memory (the sum of its Resident Set Size and the memory of the o.s. applications 
< 128 Mbytes) were chosen, and those that overlap it (is and mg) were discarded. 
This solution was adopted to avoid the extra overhead added by the swapping 
latency for large applications that may cause inaccuracies in our measurements. 

Also, the number of context switches obtained with the ep and sinring bench- 
marks in the two environments (original PYM and DTS (IP = 100ms) with 
medium owner workload) were measured. The results are shown in Figure 6. 

In Figure 6 it can be seen that in the case of the benchmark with high 
communications (sinring). the number of context switches is lower in the DTS 
case due to the synchronization between distributed tasks. In the case of ep. the 
number of context switches is increased by the DTS environment because ep 
must release CPU in each PS period. Thus, DTS system helps only the message 
passing applications. 
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Table 7. Sizes of the benchmarks: VI (Virtual Image: text + data 4- stack) and RSS 
(Resident Set Size) in Kbytes. Context switch costs (in fis) of one instance of the 
benchmark when one copy (lp.) or two (2 p.) were executed 

Bench. VI RSS 1 p. 2 p. 
ep 1160 596 2263 2902 

sinring 1088 592 2182 2885 
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Fig. 6. ep and sinring context switches 

5    Conclusions and Future Work 

The DTS environment, which implements explicit coscheduling of distributed 
tasks in a non dedicated NOW has been introduced. Studying the communica- 
tion architecture of the distributed applications and enabling each node of the 
system to change dynamically its configuration (dynamic and distributed), the 
communication performance of distributed applications was improved without 
damaging the performance of local ones excessively. Normally, the distributed 
tasks with high demand of CPU have not shown any improvement, but in these 
cases the overhead added to local tasks is not very significant. 

We are interested in developing more efficient methods for synchronization, 
thus decreasing the overhead introduced in the coscheduling of distributed tasks. 

In the future, we are interested in increasing the facilities of the DTS envi- 
ronment. The most important goal is to provide the DTS environment with the 
ability to run. manage and schedule more than one distributed applications and 
modify the scheduler algorithm according to this new functionality. 

The dynamic mode algorithm of the DTS environment has a centralized na- 
ture. Furthermore the Console and the Master scheduler are localized in one 
module. If the Master module fails, the system goes down and there is no possi- 
bility of recovering the work done. Even if one node (not the Master) fails, the 
distributed application will stop abnormally and invalidate the execution of the 
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distributed application, perhaps for a long period of time. The solution is to pro- 

vide the DTS environment fully distributed behavior. For the accomplishment 

of these objectives we have to study and propose new algorithms to implement 

fault tolerance. 
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Abstract. In this paper we proposed a new multiprocessor scheduling 
algorithm, called MCP/AM, which is based on well known MCP algo- 
rithm. Both, the MCP/AM and MCP algorithms have the same com- 
plexity of 0{rr log v), where v is the number of nodes in the task graph. 
Algorithm, described in this paper, does not model communication time, 
that is, it assumed that the data transmissions between processors did 
not take any time. 
The MCP/AM algorithm outperforms two other algorithms (ETF and 
MCP) by generating similar or better solution in the term of the schedul- 
ing length. 

Keywords: Parallel processing, directed acyclic graph, task scheduling, com- 
piler. 

1    Introduction 

Multiprocessor systems [9,16,6.17] are increasingly being used to meet the high 
performance and intense computation needs of today's applications. 

To efficiently execute a program on a multiprocessor system, it is essential 
to solve a minimum execution time multiprocessor scheduling problem [13.11]. 
which determines how to assign a set of tasks to processors and in what order 
those tasks should be executed to obtain the minimum execution time. 

The tasks can then be scheduled to the processors for execution by using a 
suitable scheduling algorithm, static in compile-time or dynamic in run-time [5, 
7,3]. In this paper static scheduling is discussed. 

Static scheduling, except for a few highly simplified cases, is an NP-complete 
problem. Thus, heuristic approaches are generally sought to tackle the problem. 
Traditional static scheduling algorithms attempt to minimize the schedule length 
through iterative local minimization of the start times of individual tasks. 

On the other hand for example the Dynamic Level Scheduling (DLS) al- 
gorithm dynamically selects tasks during the scheduling process [12]. However, 
like most greedy algorithms, these scheduling approaches cannot avoid making 
a local decision which may lead to an unnecessarily long final schedule. 
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"Although static scheduling is done at compile-time and therefore can afford 
some extra time in generating a better solution, back-tracking techniques are 
not employed to avoid high complexity. 

The scheduling problem is intractable even when severe restrictions are im- 
posed on the task graph and the machine model. As optimal scheduling of tasks 
is a strong NP-hard problem, many heuristic algorithms have been introduced 
in the literature [4]. The following simplifying assumptions about the task graph 
and the machine model are common in Bounded Number of Processor (BNP) 
Scheduling [2]: 

1. the communication costs on the edges are zero; 
2. the processors are.fully connected; 
3. the processors are homogeneous, that is, their processing speeds are the 

same. 

Due to the intractability of the problem, heuristics are devised for obtaining 
suboptimal solutions in an affordable amount of computation time. Even though 
most heuristics can produce high quality solutions, their time complexities are 
quite high. Furthermore, heuristics designed with more relaxed assumptions tend 
to incur higher time complexities. Thus, many heuristics work well for small 
task graphs but do not scale well with the problem size. Therefore, the solution 
quality and applicability are usually in conflict with the goal of reducing the 
time complexity [2]. 

In this paper we proposed a low time complexity multiprocessor scheduling 
algorithm, called MCP/AM, which is based on critical path (CP) algorithm, such 
as, for example, the MCP [18] algorithm. It generates high quality scheduling 
solutions. 

The remaining paper is organized as follows: In the next section, we present 
a brief overview of various approaches that have been proposed for the DAG 
scheduling problem. In Sect. 3, we present the proposed algorithm, and discuss 
its design principles. Section 4 includes some scheduling examples illustrating 
the operation of the algorithm. We present the experimental results in Sect. 5. 
and conclude the paper with some final remarks in Sect. 6. 

2    The Multiprocessor Scheduling Problem 

In static scheduling, we represent a parallel program by a directed acyclic graph 
(DAG) [6,16.9,15]. In a DAG, G = (V,E), V is a set of r nodes, representing 
the tasks, and E is a set of e directed edges, representing the communication 
messages. Edges in a DAG are directed and, thus, capture the precedence con- 
straints among the tasks. The cost of node n,, denoted as w(rij). represents the 
computation cost of the task. The cost of the edge, emerges from the source 
node n, and incidents on the destination node n.j, denoted by Cjj. represents the 
communication cost of the message. 

The source node of an edge is called a parent node, while the destination 
node is called a child node. A node with no parent is called an entry node and a 
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node with no child is called an exit node. A node can only start execution after 
it has gathered all of the messages from its parent nodes. The b-level of a node 
is the length (sum of the computation costs only) of the longest path from this 
node to an exit node. The t-level of a node is the length of the longest path from 
an entry node to this node (excluding the cost of this node). 

Figure 3 shows an example of the DAG which we will use in the subsequent 
discussion. 

The objective of scheduling is to minimize the schedule length, which is 
defined as the maximum finish time of all the nodes, by properly assigning tasks 
to processors such that the precedence constraints are preserved. 

The existing scheduling algorithms are classified into four categories by Ah- 
mad and Kwok [2]: 

1. Bounded Number of Processors (BNP) Scheduling: A BNP algorithm sched- 
ules a DAG to a limited number of processors directly. The processors are 
assumed to be fully connected without any regard to link contention and 
scheduling of messages. The proposed algorithm belongs to this class. 

2. Unbounded Number of Clusters (UNC) Scheduling: A UNC algorithm sched- 
ules a DAG to an unbounded number of clusters. The clusters generated 
by these algorithms may be mapped onto the processors using a separate 
mapping algorithm. These algorithms assume the processors to be fully con- 
nected. 

3. Arbitrary Processor Network (APN) Scheduling: An APN algorithm per- 
forms scheduling and mapping on an architecture in which the processors 
are connected via a network topology. An APN algorithm also explicitly 
schedules communication messages on the network channels, taking care of 
the link contention factor. 

4. Task-Duplication-Based (TDB) Scheduling: A TDB algorithm duplicates 
tasks in order to reduce the communication overhead. Duplication, however, 
can be used in any of the other three classes of algorithms. 

For our purpose, we will compare the proposed algorithm with two other 
BNP algorithms (ETF and MCP). 

The proposed algorithm is based on the classic list scheduling technique [13, 
1]. The basic idea of list scheduling is to make a scheduling list (a sequence of 
nodes for scheduling) by assigning them some priorities, and then repeatedly 
execute the following two steps until all the nodes in the graph are scheduled: 
(1) Remove the first node from the scheduling list: (2) Allocate the node to a 
processor which allows the earliest start time. 

In a traditional scheduling algorithm, the scheduling list is statically con- 
structed before node allocation begins, and, more importantly, the sequencing 
in the list is not modified. 

The ETF Algorithm 

The Earliest Task First (ETF) algorithm [8] uses static node priorities and as- 
sumes only a bonded number of processors [13,14]. At each scheduling step, the 
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ETF algorithm first computes the earliest start times for all the ready nodes and 
then selects the one with the smallest value of the earliest start time. A node 
is ready if all its parent nodes have been scheduled. The earliest start time of 
a node is computed by examining the start time of the node on all processors 
exhaustively. When two nodes have the same value of the earliest start times, 
the ETF algorithm breaks the tie by scheduling the one with a higher static 
priority. The complexity of the ETF algorithm is 0(pv'2), where p is the number 
of the processing elements in the target machine, and v in the number of nodes 
in the task graph. 

The MCP Algorithm 

Similar to the ETF algorithm, the Modified Critical Path (MCP) algorithm [18] 
constructs a list of tasks before the scheduling process starts. 

The MCP algorithm uses the ALAP (As-Late-As-Possible) start time of a 
node as the scheduling priority. The MCP algorithm first computes the ALAPs 
of all the nodes, then constructs a list of nodes in ascending order of ALAP 
times. Ties are broken by considering the ALAP times of the children of a node. 
The MCP algorithm then schedules the nodes on the list one by one so that 
a node is scheduled to a processor that allows the earliest start time using the 
insertion approach. The MCP algorithm looks for an idle time slot for a given 
node. The algorithm is briefly described in Fig. 1 [18,13]. 

(1) Compute the ALAP time of each node. 
(2) For each node, create a list which consists of the ALAP times of the node 

itself and all its children in descending order. 
(3) Sort these lists in ascending lexicographical order. Create a node list ac- 

cording to this order. 

Repeat 
(4) Schedule the first node in the node list to a processor that allows the earliest 

execution, using the insertion approach. 
(5) Remove the node from the node list. 
Until the node list is empty. 

Fig. 1. The MCP algorithm. 

The complexity of the MCP algorithm is 0(v2 logu). 

3    The Approximation Algorithm 

In this section we present the proposed scheduling MCP/AM algorithm. 
The multiprocessor scheduling problem treated in this paper is to determine a 

non-preemptive schedule to minimize the execution time (or the schedule length) 
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when a set of v computational tasks having arbitrary precedence constraints 
and arbitrary processing time are assigned to p processors of the same ability 
for execution. These tasks are represented by a task graph (DAG) as shown in 
Fig. 3. 

It is assumed that the target platform is a multiprocessor system and the 
communication costs between nodes are zeros. 

Table 1 summarizes the definitions of the notations used throughout the 
paper. 

Table 1. Definitions of Notations 

Notation Definition 
■n, 

w(rii) 
Cij 

v 
e 
P 

CP 
EST 

ALAP 
SLj(i) 

A node in the parallel program task graph 
The computation cost of node n, 
The communication cost of the directed edge from node n, to n, 
The total number of nodes in the task graph 
The total number of edges in the task graph 
The number of processing elements in the target multiprocessor system 
A critical path of the task graph 
The earliest start time 
The As-Late-As-Possible start time 
The schedule length of the step i of the scheduling process on the pro- 
cessor j 

A node can be scheduled to a processor if the processor has an idle time 
slot that starts later than the node's parents finish times and is large enough to 
accommodate the node. The simple procedure in [13] outlines the computation 
of the start time of a node on a processor. 

In the following, we discuss some of the principles used in the design of 
our algorithm. To minimize the final schedule length, we select a node as it' is 
selected in the MCP algorithm, which is described in Sect. 2. At each step of the 
scheduling process, the first node is removed from the list of nodes (list of nodes 
is sorted in increasing lexicographical order of the latest possible start times) 
and it is scheduled to a processor. 

While we are able to identify a selected node, we still need a method to select 
an appropriate processor for scheduling that node into the most suitable idle time 
slot. At each step, the algorithm needs to find the most suitable processor which 
contains the most suitable place in time for a selected node. 

The MCP algorithm schedules the selected node to a processor that allows for 
the earliest start time. Our MCP/AM algorithm has another processor selection 
criteria and it is described in Fig. 2. 

The function Build-ALAPQ computes the ALAP time of each node and 
create a list, which consists of the ALAP times of the node itself and all its chil- 
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Bvild-ALAPQ: //As late as possible time for each node 

Sort-iLAPQ: // See the MCP algorithm 

for (i = 0; i < v: i++) 

{ 
U = EST(ALAP(n;)); 

// v is number of tasks 

// Earliest start time of node rii  in a 
ALAP list 
// SLj (i) is schedule length of the step i 
of the scheduling process on the processor 

if a processor j exists ■where 
J 
// Processor selection 

SLj{i) = U 
then 

schedule node n, to the processor j 
else 

schedule node n, to a processor tha t 
allows the earliest execution 

} 

Fig. 2. The MCP/AM algorithm. 

dren in descending order. Function Sort.ALAP() sorts these lists in ascending 
lexicographical order as in the MCP algorithm. 

Assumed that, in the scheduling process there are already scheduled i — 1 
nodes. Next selected node is n,-. Our MCP/AM algorithm tries to find a processor 
j for the selected node n,-. We need to distinguish two cases of the processor 
selection step. If a processor exists, say j, which satisfy that SLj(i) is equal 
to the earliest start time of the selected node m, our algorithm assigns the 
selected node n,- to the processor j. Otherwise it assigns the selected node n,- to 
a processor that allows the earliest execution (like the MCP algorithm). 

The complexity of the MCP/AM algorithm is 0{v2\ogv) - the MCP algo- 
rithm has the equal complexity. 

4    Scheduling Example 

In this section, we present an example to demonstrate the operation of the 
proposed algorithm using the task graph shown in Fig. 3. The task graph was 
drawn with the Graphlet Tool1. 

The schedules of the ETF, MCP, and MCP/AM algorithms are shown in 
Fig. 4. The entry and exit node are dummy. The MCP algorithm, as men- 
tioned above, creates a list of edges and schedules the task graph onto the 
multiprocessor machine with 2 processors (processing elements) in the order: 
ni.722,n5.n3.n8.n7,n4,Tiii.nio,n9.Tie,ni2- The MCP/AM schedules the nodes 
in- the same order as the MCP algorithm. The ETF algorithm schedules the 
nodes in the order: rii,n-2-/n^.71.3,714,n-.rig.nio-nQ.ng.nn.n 12■ 

http://www.fmi. uni-passau. de/'Graphlet 
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The schedule lengths generated by the ETF, MCP, and MCP/AM algorithm, 
are 67, 64, and 63 time units, respectively. 

Fig. 3. An example of a task graph with 12 nodes 

5    Results 

In this section, we present the performance results of the MCP/AM algorithm 
and compare it with the ETF and MCP algorithms. 

We have implemented the scheduling algorithms on a SUN workstation. They 
were evaluated by using a Prototype Standard Task Graph Set2. The Prototype 
Standard Task Graph Set has 300 task graphs with 50 to 2500 tasks. 

The results obtained in our experiments are shown in Table 2. The second 
column indicates the name of the task graph instance. In next three columns 
results of the scheduling length for the ETF, MCP, and MCP/AM algorithm, 
respectively, are shown. The best schedule length value of all the algorithms 
is boldface. In the last two columns the optimal scheduling length value and 
difference between optimal scheduling length and the best schedule length value 

2 http:/'/www..kasahara.elec.waseda.ac.jp/schedule/ 
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ETF 

Proc 1 2 7 10 11 

Proc2 5 3 4 8 6 9 

MCP 

Proc 1 2 7 4 10 6 

Proc 2 5 3 8 11 9 

MCP-ABS 

Proc 1 2 8 11 6 

Proc 2 5 3 7 4 10 9 

Fig. 4. The schedules of the task graph on Fig. 3 generated by the ETF (schedule length 
= 67 time units), MCP (schedule length = 64 time units) and MCP/AM algorithms 
(schedule length = 63 time units). 

of all the algorithms are shown, respectively. For some problem instances, the 
optimal scheduling length is not known. 

In order to rank all the algorithms in terms of the scheduling lengths, we made 
a global comparison. We observed the number of times each algorithm performed 
better, worse or the same compared to each of the other two algorithms. This 
comparison is presented in Fig. 5. Here, three boxes have the left and the right 
side. Each left side of the box compares two algorithms - the algorithm on the 
left side and the algorithm on the top. Each left side of the box contains three 
numbers preceded by ">", "<", and "=" signs which indicate the number of 
times the algorithm on the left performed better, worse, or the same, respectively, 
compared to the algorithm shown on the top. Each comparison is based on the 
total of 300 task graphs. 

Each right side of the box contains the number of times when one of algo- 
rithms, the algorithm on the left side and the algorithm on the top, find the 
optimal scheduling length. Optimal scheduling lengths are known for 255 of all 
300 task graphs. They were computed on a parallel machine with 3000 processors 
using ISH algorithm [11,10]. 

For example, the MCP/AM algorithm performed better than the MCP algo- 
rithm in 246 cases, performed worse in 54 cases, and never performed the same. 
The MCP/AM algorithm or the MCP algorithm or both of them found optimal 
solution of the scheduling length in 156 cases. Similarly, the MCP algorithm 
performed better than the ETF algorithm in 205 cases, performed worse in 51 
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Table 2. Schedule results of 40 task graph instances 

|        Graph ETF MCP MCP/AM Optimum Error 

1 protoOOO.stg 537 537 537 537 0 
2 protoOOl.stg 1191 1179 1178 1178 0 
3 proto002.stg 357 363 347 341 6 
4 proto003.stg 556 556 556 556 0 
5 proto004.stg 267 238 222 — — 
6 protoOOO.stg 758 749 742 742 0 
7 proto006.stg 171 154 143 — — 
8 proto007.stg 492 489 489 489 0 
9 proto008.stg 578 582 572 571 1 
10 proto009.stg 625 625 625 625 0 
11 protoOlO.stg 351 338 334 334 0 
12 protoOll.stg 513 496 485 — — 
13 proto012.stg 1804 1795 1793 1793 0 
14 proto013.stg 698 688 6°82 681 1 
15 proto014.stg 523 520 511 — — 
16 proto015.stg 513 513 494 491 3 
17 proto016.stg 1016 1026 1007 — — 
18 proto017.stg 487 475 463 — — 
19 proto018.stg 704 706 701 700 1 
20 proto019.stg 683 682 668 667 1 
21 proto020.stg 1523 1514 1505 1504 1 
22 proto021.stg 644 632 608 605 3 
23 proto022.stg 1625 1620 1612 1609 3 
24 proto023.stg 1619 1628 1614 1612 2 
25 proto024.stg 1295 1291 ,1283 1281 2 
26 proto025.stg 1193 1198 1192 1188 4 
27 proto026.stg 1509 1502 1500 1500 0 
28 proto027.stg 2003 2001 2001 2000 1 
29 proto028.stg 1538 1506 1504 1504 0 
30 proto029.stg 845 830 830 830 0 
31 proto030.stg 1076 1057 1051 1051 0 
32 proto031.stg 1383 1364 1356 — — 
33 proto032.stg 1411 1396 1389 — — 
34 proto033.stg 3690 3688 3685 3685 0 
35 proto034.stg 1515 1517 1507 1507 0 
36 proto035.stg 3852 3845 3842 3841 1 
37 proto036.stg 987 974 966 966 0 
38 proto037.stg 4090 4089 4087 4086 1 
39 proto038.stg 1631 1621 1617 1616 1 
40 proto039.stg 3167 3162 3159 3159 0 
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( MCP) (ETF) TALL) 

> 246 ; 

<0     '156 

= 54 i 
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>264| 

-<1    1156 
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= 35 i 
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< 1 
= 89 

(MCP/AM)— 

i 

>205| 

< 51 i 50 

= 44 i 

>205 

<297 
= 98 

I          IVlV^l           i 

>52 

I ETF r~ 
= 7? 

Fig. 5. A global comparison of the three algorithms in terms of better, worse, and 
equal performance. 

cases, and performed the same in 44 cases. Algorithms combined found optimal 
scheduling length in 50 cases. 

An additional box for each algorithm compares that algorithm with all other 
algorithms combined. 

The experimental results of the quality of the schedule length are summarized 
in Table 3. The MCP/AM algorithm found the optimal schedule length in 156 
cases, and the solution within 5% in 98 cases. 

We can notice that the proposed MCP/AM algorithm outperformed two 
other well known algorithms. Based on these experiments, we can order all three 
algorithms in the following order: MCP/AM, MCP, and ETF. The same order 
of the MCP and ETF algorithms can be found in [14], where communications 
are assumed among the tasks. 

6    Conclusion and Future Work 

This paper presents a task scheduling algorithm which can schedule directed 
acyclic graphs (DAGs) with a complexity of 0{v2 logu), where v is the number 
of tasks in the DAG. 

The performance of the algorithm has been observed by comparing it with 
other existing bounded number of processor (BNP) scheduling algorithms in 
terms of the schedule length. 
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Table 3. Schedule lengths with respect to optimal solutions 

Quality of the solution (Error) ETF MCP MCP/AM 
1 0% (optimum) 33 50 156 
2 <5% 178 182 98 
3 5% - 10% 30 21 1 
4 10% - 15% 11 2 0 
5 15% - 20% 3 0 0 
6 > 20% 0 0 0 
7 Optimum not known 45 45 45 

Total 300 300 300 

The algorithm schedules the tasks and is suitable for graphs with arbitrary 
computation and without communication costs, and is applicable to systems 
with homogeneous fully connected processors. 

In the future we intent to extend our algorithm to schedule both the tasks 
and messages for task graphs with arbitrary computation and communication 
costs, and it will be applicable to systems with arbitrary network topologies 
using homogeneous or heterogeneous processors. 
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Abstract. MRU replacement policy is frequently used to improve the 
performance of buffer caching for sequential and looping pattern applications. 
On the way of implementing MRU on Linux, we observed that MRU shows 
lower response time by up to 100% compared to LRU. Indirect blocks, which 
are used in the file structure of Unix family operating systems for large-size 
file, are the main reason of decreasing performance. Indirect blocks are fetched 
but immediately replaced by MRU replacement policy, even those will be soon 
and frequently needed again. Based on this observation, we propose a buffer 
replacement policy named 'LMRU'. LMRU maintains frequently-used blocks 
such as indirect blocks in the cache, even it manages all other blocks on buffer 
cache with MRU. We have designed and implemented it in a Linux kernel. 
LMRU improves the response time by up to 70% compared to LRU and 163% 
compared to M RU. 

1. Introduction 

Rapid improvements in processor and memory performance have created a 
situation in which the file system I/O has become a major bottleneck for system 
performanceflO]. To solve this problem, a lot of researches have been done in the 
areas of virtual memory, file system and I/O system. The management of the buffer 
cache is one of these research areas. 

Since the memory allocated to buffer cache is limited, a block should be replaced 
to store a new data block. A buffer replacement policy is the problem of deciding 
which memory block to replace when making room for a new one. An optimal buffer 
replacement algorithm is one that incurs the lowest number of cache misses. 
However, this algorithm requires future knowledge of the reference sequence, and it 
is not realizable in general. As a result, storage systems employ a number of buffer 
replacement algorithms, which attempt to approximate the performance behavior of 
the optimal buffer replacement algorithm[ll]. LRU algorithm is one of the most 
popular replacement policies, particularly in commercial implementations. It is used 

+ This research was supported by KOSEF under grant No. 96-0101-04-01-3 
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widely in database buffer management, virtual-memory management, file system and 
I/O caches. This policy exploits the principle of temporal locality and evicts the block 
used least in the recent past on the assumption that it will not be used in the near 
future. However it is well known that an application which shows large sequential or 
looping reference pattern is not fit to use LRU. In prior works, MRU is used to 
manage such patterns. MRU is the most appropriate policy to manage such 
patterns[l][2][3][4]. 

To effectively support a large sequential or looping reference patterns of some 
applications, we implemented MRU in Linux buffer cache. When we were testing our 
implementation, we observed that the same block was fetched and replaced 
repeatedly. It causes lower performance even though the application's reference 
pattern is suitable to MRU. We found that indirect blocks, which are used in file 
system of Unix family operating systems for large size file, are the main reason of 
decreasing performance. When an application access a data block, larger than 12 
block, it must refer the block via indirect block, as a result indirect block is fetched 
and replaced frequently when we applied MRU policy. 

LMRU solves this problem. It maintains frequently-used blocks such as indirect 
blocks in the buffer cache, even it manages all other blocks on the buffer cache with 
MRU. LMRU improves the response time by up to 70% compared to LRU and 163% 
compared to MRU. 

In Section 2, we discuss background. In Section 3, we describe the indirect block in 
the Unix file system. In Section 4, we propose a new buffer cache management policy 
for sequential or looping reference pattern application. In Section 5, we analysis an 
implementation and the performance of the LMRU. Finally, we present our 
conclusions in Section 6. 

2. Background 

In this Section we introduce the buffer cache management scheme, present an 
operation and analysis of MRU and look into data access pattern. 

2.1 Buffer Cache 

The block-device interface uses the buffer cache to minimize the number of I/O 
requests that require an I/O operation, and to synchronize with file system operations 
on the same device[8] . When a process tries to read data from the disk, the OS kernel 
gives the request to the buffer cache module. The buffer cache searches its buffer pool 
to see if the requested data is in the pool. If valid data is found, the data is returned to 
process without accessing the disks. If there is no buffer related to the requested data, 
new free buffer is allocated to store for the data from free list. 

If there is no free buffer to use, some of buffers should be replaced. When buffer 
cache module select buffers to be flushed, it is well known that LRU policy works 
well for general cases. Traditional OS uses LRU replacement policy. 
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2.2 MRU (Most Recently Used) 

MRU keeps track of the last time each block was accessed and replaces the block 
that has been accessed in the nearest time. Among all buffer replacement policies, it 
has been known that for looping reference, a MRU replacement requires the fewest 
number of faults[4]. So in previous works, MRU is used to manage large sequential or 
looping reference pattern [1][2][3][4]. [3] proposed SEQ. SEQ normally performs 
LRU replacement. When SEQ detects sequential access pattern, SEQ performs MRU 
replacement on the sequence to prevent LRU list flooding. [1] [2] [4]applies MRU as a 
buffer replacement policy to manage long sequential or looping reference patterns. In 
this paper we analyze what parameter has influence on the performance of the system 
when we apply MRU. as a buffer management policy. Let the size of buffer cache be 
S, loop length L, the number of loop iteration K(where S>L, K>0). 

SS      S     S      S S         SS SS    S 
 ■»-       |    a   b    o   d   | abcd||abccl||abcd a   b    c   d   | 

c     d 
b   b     b 

a     a    a     a 

abed        abcdabcd 
d     a   a    c       ddbccabb 
bdda        ccdbbcaa 

abed 
d     aac 
bdda 

s    s s     SS s*s   SSV*/     SS 
|    ab    cd|!    ab    cd abcd||abcd|jabcdj 
abc      d      abed 
ddb      c      e      abb 
c      cdbb      eaa 

abed      abc      d      abed 
d      aac      ddb      c      c      abb 
b     dda     c     cdb     b      eaa 

Fig. 1. An Example of mini-cycle when we manage looping data as MRU. 

As figure 1 shows, when we manage MRU for sequential and looping reference 
patterns, it occurs in a periodic pattern. The length of a period is L*(L-1). We will call 
the period mini-cycle. When we observe the number of hits in a mini-cycle, there are 
S or S-l hits occurring. So the number of hits in the mini-cycle are as follows. 

The number of hits in a mini-cycle 

-Sx(S-l)+(S-l)x(L-S)=(S-l)xL (1) 

Let the number of mini-cycles be M. Then M can be represented as M = L(K-1)/(L 
-1)J. Let R is the value of (K-l) modulo (L-l) then the total number of hit is as 
follows. 

Numbeiofhits= 
{(S-l)xL}xM + SxÄ ifÄ<(S-l) 

{(S-l)xL}xM+(S-l)x(7? + l) if^>(S-l) 

(2) 

Equation (2) shows us that the performance of the system has related with the size 
of buffer cache, loop length and the number of iteration when we apply MRU as a 
buffer cache management scheme. 

2.3 Data Access Pattern 

Recent research has shown that most applications show various block reference 
patterns. Applications for continuous media generally show a sequential or periodic 
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reference pattern[5]. A large class of scientific applications show a looping reference 
pattern[6]. Database applications show a irregular block reference pattern[7]. Based 
on the previous research, we classify the block reference pattern as follows. 

• Sequential reference: A sequential reference pattern has the property that all data 
blocks are referenced one after another. 

• Looping reference: A looping reference pattern has the property that sequential 
reference is performed repeatedly. 

• Irregular reference: An irregular reference pattern is not equal to reference 
probability among all blocks. 

3. Indirect Block in the Unix File System 

In Unix, the information required for management is kept strictly apart from the 
data collected in a separate inode structure for each file. Inode contains information 
about the file size, its location, owner of the file, time of creation, and so on. In 
addition to descriptive information about the file, the inode contains the pointer to a 
block of pointers to additional data blocks. BSD and Linux keep 15 pointers of the 
inode block in the file's inode block[8]. The first 12 of these pointers point to direct 
blocks. Thus, the data for small (no more than 12 blocks) files do not need a separate 
index block. The next three pointers point to indirect blocks. The first indirect block is 
an index block, containing not data but rather the pointers of blocks that contain data. 
Then there is a double indirect block pointer, which contains the pointer of a block 
that contains the pointers of blocks that contain pointers to the actual data blocks. The 
last pointer contains the pointer of a triple indirect block. Since an application 
accesses a data block it must access data block via indirect block, an indirect block is 
fetched and replaced if we use buffer cache management policy as MRU. 

Figure 2 shows a referenced block in the buffer cache when an application reads a 
file sequentially in Linux. It shows that data block is referenced via indirect block. 

Fig. 
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Virtual Time 

2. Block reference pattern as we read a file sequentially 

15000 
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In this paper, we analyze how many indirect blocks are referenced as we read a file 
sequentially in order to know what parameters are related to indirect blocks. Let file 
size be FS, block size BS, the size of pointer K. Then we can represent the number of 
blocks N in a file as N = TFS/BSI and the number of pointers P in a block as 
P=f BS/KI. We assume that an inode can access data block directly up to D'h block and 
an inode can support triple indirect block. Then the number of referenced indirect 
blocks is as follows. 

The number of referenced indirect blocks 

0 0<N<D 1 (3) 
N-D D<N<(D + P) 

2N-P-2D (D + P)<N<(D+P2 + P) 

3N - 2P2 - 2P - 3D (D + P2 + P) < N < (D + P" + P2 + P) 

Equation (3) shows us that the number of indirect blocks relates to the number of 
blocks in a file. As a file size gets larger, indirect blocks are referenced more and 
more. 

4. LMRU Algorithm 

When we apply MRU in large sequential or looping reference pattern, the indirect 
block is fetched and replaced frequently. To solve this problem we propose LMRU. 
LMRU is designed to consider characteristics of indirect block and data block in large 
sequential and looping reference patterns. To manage such patterns, we have two 
regions IR(region for filtering indirect block) and DR(region for managing data 
block). Each region is composed of list structure. A block which is located at the head 
of the list has the highest priority to replace and tail of the list has the lowest priority 
to replace. Every block is listed in hash table so it is possible to 0(1) time search. The 
LMRU has the following data structure. 

• IR: When a block hits in IR, then the block moves to the tail of the list. When there 
is no free buffer for assigning to a new block, LMRU replaces a block at the head 
of the list and then puts the block at the tail of the list. 

• DR: When a block hits in DR then the block moves to the head of the list. When 
there is no free buffer for assigning to a new block, LMRU replaces a block at the 
head of the list and then puts the block at the head of the list. 

LMRU has a two-tiered structure. When a block is fetched from a disk, LMRU 
puts it into IR.When a block is no longer needed in IR, then the block moves into DR. 
Figure 3 depicts the logical flow of LMRU. 
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Fig. 3. The logical flow of LMRU 

IR is designed to maintain frequently-used blocks such as indirect blocks and DR 
is designed to manage data block. So LMRU is a structure to cache indirect block and 
manage data as MRU. 

5. Performance Measurements 

We present the results of experiments. We used Linux-2.0.32 on a 200MHZ Intel 
Pentium PC with 64MB RAM and 5GB Quantum Fireball hard disk. The size of 
Linux buffer cache grows dynamically. We fix the size of buffer cache in order to test 
the effect of various replacement policies as we increase the size of buffer cache. 

We experimented to decide the size of IR and then compare the performance of 
various applications under LMRU, LRU and MRU. The application traces are used in 

[1][2]. 

5.1 File Access Traces 

Applications we used are : 
• Dinero: Dinero is a cache simulator. Dinero reads a trace file sequentially and 

repeatedly. 
• Cscope: Cscope is a C-source examination tool. It builds a database of all source 

files, then uses the database to answer queries about the program. 
• Glimpse: Glimpse is a text information retrieval system. It uses two-level 

searching. First it searches the index for a list of all blocks sequentially that may 
contain a match to the query. Then, it searches each such block separately. 
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•  Sort: Sort is an external sorting utility in Unix. We used a 17MB text file as input, 
and sorted numerically on the first field. 

The applications that we used are summarized in Tablel. 

Program Description 
The size of 
input data 

Access pattern 

Dinero Cache simulator 8M Sequential, Looping 
Cscope C examination tool 18M Sequential, Looping 

Glimpse 
Text information 

retrieval tool 
40M 

Sequential, irregular 

Sort Unix sort utility 17M Sequential 
Table 1. Characteristics of the applications 

5.2 Experiments Results 

We experimented to decide the size of IR. Table2 shows the elapsed time of 
Dinero, Glimpse, Cscope and Sort as we vary the size of IR and set DR to 6MB. 

AppMR size 0 block 1 block 2 block 3 block 4 block 5 block 
Dinero 20.719 20.12 16.204 15.204 12.109 12.109 
Cscope 14.1644 13.712 12.325 11.325 8.509 8.509 
Glimpse 30.1005 29.833 27.633 25.633 25.49 25.49 

Sort 19.967 19.123 17.83 16.83 15.855 15.885 
Table 2. The elapsed time(second) of LMRU with varying the size of IR. 

Table2 shows the elapsed time of LMRU does not improve even if the size of IR is 
over 4 blocks. The reason is that there can appear three levels of indirect blocks 
before reaching the data block in Linux. When we set the size of IR to 0 block, the 
elapsed time is same to MRU. That is to say when the size of IR is 0, LMRU works as 
MRU. Based on the above experiments, we set the size of IR to 4 blocks. The sum of 
the size of IR and DR is the size of buffer cache. Since the size of IR is very small 
compared to DR, the size of buffer cache is nearly the size of DR. 

Figure 4 shows the effects of varying the size of buffer cache on the number of 
elapsed time under different buffer replacement. When we use LRU we can observe 
that the elapsed time of Dinero, Cscope and Sort has not changed even if we vary the 
size of buffer cache. That is to say, for large sequential or looping reference pattern 
applications are not likely to benefit from LRU although buffer cache size is 
increasing. But in MRU and LMRU, the elapsed time of the application is decreasing 
as the size of buffer cache is increasing because the resident block of the buffer cache 
may hit. In the case of Glimpse, since it has an irregular and sequential reference 
pattern, when we apply LRU, MRU and LMRU to it, the elapsed time of the 
application is decreasing as we increase the size of buffer cache. As figure 4 shows, 
the performance of MRU is low compared to LRU and LMRU. The reason is that the 
indirect block is fetched and replaced frequently. 
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Fig. 4. Performance for various applications as changing buffer cache size and 
buffer replacement policies 

In LMRU, since the replacement policy has a structure to maintain an indirect 
block and manage data block as MRU, for sequential and looping applications, 
LMRU outperformed LRU and MRU. 

5.3 The Analysis and Experiments on the System Performance by Indirect Block 

As we've shown in figure 4 of section 5.2, when we apply MRU to sequential or 
looping reference pattern application, it is very important to maintain indirect block so 
as not to degrade system performance. In this section, we present the experimentation 
and analysis on the influence of indirect block to the system performance. 

Figure 5 shows the influence of indirect block to the system on the various 
applications. We used the hit ratio as a performance metrics. Since the referenced 
blocks to a buffer cache include not only data blocks but also indirect blocks, we 
represent the hit ratio as equation (4). 

Hit ratio = - 
The sum of hit data blocks and indirect bocks 

The sum of requested data blocks and indirect bocks 

In LMRU, the number of hit indirect blocks is represented as equation (5) 

The numberof hit indirect block 
=The numberof requestedindirect blocks 

- The numberof cold miss of indirect blocks 

(4) 

(5) 
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The effect of indirect block to the whole system is a ratio of the sum of application 
requested data block and indirect block to the number of hits on indirect block. We 
can drive the equation (6) using equation (4) and (5). Equation (6) shows an influence 
of indirect block to the system 

An influence of indirect block on the system 

The number of hits on indirectblock 

(6) 

The sum of requsted block and indirect block 

Using equation (6) we have tested the influence of indirect block on the Linux 
kernel. 

o _o 

1 
0.9 
0.8 
0.7 
0.6 

D inero Cscope Glimpse Sort 
Application 

Fig. 5. Influence of indirect block on the system performances 

We can observe that indirect blocks influence upon the system performance by 
49.8% up to 62%. Sequential or looping reference pattern application has much 
influence on the system performance compared to irregular reference pattern 
application. 

We can analyze the influence of indirect block on the system. Using equation (3) 
and (6) we can represent an effect of indirect block on the system as equation (7)(8) 
and (9). Equations can be classified by three cases according to N. 

Case 1. D< N < (D+P) 

N-D + l 

2N-D 

(7) 

Case 2. (D+P) < N < (D+P+P-) 

2N-P-2D-2- 
N-{D + P) (8) 

3N-P-2D 

-65- 



FEUP - Faculdade de Enienharia da Universidade do Porto 

Case 3. (D+P+P2)< N < (D+P+P'+P ) 

3/V-2P2 -3P-3D-3- 
N-{D + P+P-) 

P 
N-(D+P+P~) (9) 

4N-2P1 -2P-3D 

Applications that we used are the case of equation (8). In Linux, the size of a block 
is 1024 bytes and size of pointer is 4 bytes. So there are 256 pointers in a block, an 
indirect block can point 256 data blocks. When we apply these parameters to these 
equations, we can know that the minimum influence of indirect block on the system is 
49.7% and maximum is 64.2%. This includes the result of figure (5). So we can know 
that the result of figure (5) is valid and it is very important to maintain indirect block, 
so as not to degrade system performance, when we apply MRU as a buffer cache 
management scheme. 

6. Conclusion 

This paper presents the results of a buffer cache management scheme for large 
sequential, looping and irregular patterns. When we apply MRU to large sequential or 
looping data it needs a structure to maintain indirect block so as not to fetch and 
replace frequently. To solve the problem of MRU we have designed LMRU to cache 
indirect block and manage data blocks as in MRU. LMRU can maintain indirect block 
in the buffer cache using only four blocks. LMRU improves the response time by up 
to 70% compared to LRU and 163% to MRU. LMRU can be used with application 
controlled file caching, Open Implementation method and DEAR scheme[l][2][12]. 
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ABSTRACT 

This work presents a study on the applicability of the Multiagent paradigm to 

the part-of-speech tagging problem. The work is related to Computational Linguistics and 

Distributed Artificial Intelligence in order to propose a non sequential approach to the part- 

of-speech tagging problem. Natural Language Processing (NLP), and more specifically 

Corpus-based Processing, study linguistic phenomena under the point of view of Computer 

Science. NLP has given a significant contribution to man-machine communicatioa 

Multiagents Systems (MAS) is a well-established concept in the area of Distributed 

Artificial Intelligence. MAS's has been thoroughly studied towards application in NLP. h. 

this work we propose a distributed architecture in which every agents acts on a specific 

style corpus. The proposed architecture has been implemented and it is being currently 

tested with an initial set of texts. 

1 Introduction 
The actual phase of Computer Science development challenges us to 

diminish the interaction problems between computers and users. The Artificial 
Intelligence and the Natural Language Processing (NLP) are source of research 
looking for different ways of minimising these problems. 

The Processing based on Corpus is an approach which uses heuristics for 
the abstraction of linguistic knowledge and also uses stochastic techniques on 
large volumes of textual data (written or spoken) available for computer science 
processing, this makes learning by means of natural examples possible on the 
target language. 

The treatment given to the textual data basis which supports the heap of the 
Human knowledge, such as those expressed in natural language, the information 
recovered, the Man-Machine interfaces, automatic translations, language 
comprehension and generation, are detenninants to the NLP evolution. 
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This work has themain objective of presenting an investigation made about 
the use of Multiagent model on the Natural Language Processing through a 
distributed architecture of tag agents which can maximise the results of sequential 
approaches. 

The linguistic knowledge taken from a corpus can be: specific to this 
corpus, generic to a group which corpora with texts of similar origin or of validity 
to all the language studied/treated. The processing of various corpora can give 
information about the specificity'generality levels of parts of speech. 

Our proposal is an architecture of multiagent system to tag texts where 
multiple tag agents exchange information during the training and tagging phases. 
This architecture is made by a set of specialised tag on specific domains (or text 
styles) and of one generic tag in order to avoid redundancies. 

The expected advantages of this approach are: increase of precision of 
tagging with a minor set of examples for the training according to the focus on 
specific domains of texts styles and a better performance on training according to 
the use of parallelism. 

On section 2 we present the basic concepts of the three areas studied: 
Natural Language Processing, Processing based on corpus and the problem of 
corpus tag. On section 3 we present the Architecture of our system, the proposed 
agents model and the co-operation layer between the society agents. On section 4 
we present the aspects of the system prototype implementation proposed and on 
section 5 we present our conclusion and proposes for future works. 

2 BASIC CONCEPTS 
2.1 Natural Language Processing 

The Natural Language Processing (NLP) [ALLE94], Artificial Intelligence 
sub-area, means two areas with different focus and similar problems put together. 
Computer Science needs more natural interfaces, but on the other hand Linguistics 
needs computer science methods to develop its theories. 

The challenges are not few, the concepts are not unified yet, but the 
development have been noticed. The textual data basis treatment which supports 
the heap of Human knowledge such as those expressed in natural language, the 
information recovered, the Man-Machine interfaces, automatic translations, 
language comprehension and generation, are determinants to the NLP evolution. 

We must mention, at this point, that NLP treats language only as a 
symbolic language representation, which involves more meaningful factors such 
as: habits, culture, gesmres, knowledge and believes. 

Although there are many successful works on different areas of NLP 
(automatic translation, texts correction, bibliographic consults, representation 
formalisms, etc.) interpretation and automatic processing of knowledge available 
on natural language still poses problems without a complete answer whenever we 
try to apply to all systems a meaningful and genetic form. 

The high level of inter-relationship among the linguistics domain and the 
tentative of manipulating natural language on an unrestricted and unlimited form 
contribute to the complexity of this area. 
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2.2 Corpus-based processing 
A corpus is a collection of patterns (pieces, fragments) language which are 

selected and ordered according to a explicit linguistic criteria for being used as a 
sample of language. The linguistic criteria can be extern (when related to the 
participants, the occasion, the social class or the communicative function of 
language patterns) or intern (when related to the occurrence of standard language 
inside the language patterns. 

The use of corpus is made for the study of a language by the knowledge of 
the samples used naturally on the target language. 

The advantages of the corpora are: accessibility, velocity and 
exactness, fidelity. 

The corpora can basically be plain or annotated On the plain corpus there 
is no information about the text, on the annotated we could add information such 
as: lexical category, syntactic structure, speech information, etc. The annotated 
corpora can also be called tagged. 

It has been used the heuristic employment for the choice of alternatives to 
the syntactic analysis. One of these approaches, corpus-based processing, uses 
techniques based on the Probability Theory. 

The approaches based on statistics were also important because it promotes 
the ability of effective parameters learning from the corpus processing. These 
algorithms start with an initial estimate of probabilities and after then the corpus is 
processed in order to calculate the better estimate, repeating the process until no 
option of a better answer could be given. This technique guarantees the 
convergence, although it could not discover an excellent value. 

The approach basically based on knowledge emulate knowledge of human 
speech using techniques which comes from Specialist Systems. Systems based 
exclusively on rules have got a limited success. Many of the well succeeded 
systems use the stochastic approach. [CHUR93] 

2.3 Tagging 
Based on a great amount of marked texts (corpus) 

[CHUR93;CHAR93;MARC93] may efforts have been made in order to create 
programs which execute this task (tagging). 

Tagging or tagging (part-ot-speech tagging) is a process used to mark parts 
of speech at every word on a corpus. This is a very important task on the modern 
Natural Language Processing and in information retrieval. Tagging is made based 
on the context on which the word occurred in the sentence. Some words, when 
considered out of context, present more than one speech part (lexical ambiguity). 

If we think that a certain word can be classified with more than one tag (for 
example: the words book and love can be either a noun or a verb), we can abstract 
the concept of class of ambiguity. The class noun_verb is a set of all words which 
can be noun or verb. 

The advantage of using this concept is that we can use the smallest number 
of parameters to be estimated on the model used. At the Brown corpus from 50 
thousand words only 4 hundred ambiguity classes are used. 

Generally tags are constructed according to two main approaches: 
- Statistical methods (based on probabilistic models) and 
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- Rule-based models 
Statistical taggers analyse the texts according to an empirical focus, 

independent from domain or from language, through automatic construction 
techniques from inferred rules based on a training corpus which do not require 
human supervision. The tagger acquires his knowledge based on corpura 
established patteras [MERI94]. 

The taggers are created by linguists according to linguistics rulers[BRIL93; 
VILL95] based on language models and syntagmas, creating a grammar. 

This is a manual work which depends on the domain of a specific language 
what makes it an expensive work. Generally a symbolic program based on rules is 
used to construct the tagger. 

A mixed approach [BRIL92] [BRIL93] describes the tagger based on rules 
taken from statistical processes. The system is composed by two taggers, the first 
tagger creates a dictionary with the most probable category for each word, 
without considering sentential context. For unknown words there is a high level 
set of rules, such as "words starting with capital letters are common nouns", 
"words ending on 'ing' are verbs". The second tagger infers rules automatically 
from the training corpus marked context comparing the tagged corpus with the 
results of the first tagger. 

In both approaches, the size of the training corpus must be quite large to 
achieve a reasonable precision. 

This precision is calculated by two different ways: 
- quantity of correctly tagged words divided by the total quantity of corpus 

words or 
- quantity of correctly tagged sentences divided by the total corpus 

sentences. 
We can notice that the second criteria is much more rigid than the first one. 
The statistical tagger work can be divided into 3 stages: training, test 

(validation) and tagging. 
During the training the system 'learns' with the tagged corpus. Precision 

of statistical taggers on the tagged texts is proportional to the number of entry 
examples during the training stage (tagged corpus) and dependent to the corpus 
type. Whenever the entry increases the amount of information on the tagger also 
increases what promotes less efficiency. 

The formalism generally used on the implementation of the training phase 
is the HMM (hidden Markov Model) [CHAR93]. This model is a machine of 
finite state which makes possible to regulate transitions among states and to 
control the emission of the exit signal. This model presents the advantage of 
executing learning in an automatic way, independent of domain, set of tags or 
language. 

The n-grams [MERI94] uses the concept of context or neighbourhood to 
solve the ambiguity problem. The model n-gram defines that we should analyse n- 
1 neighbour word for each word in a sentence. Generally the most used models are 
bigrams which analyse the precedent word and trigrams which analyse the two 
precedent words. The more word analysed the most precise the results and higher 
the cost of processing. 
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During the training process the tagger receives the tagged corpus and 
estimates the HMM parameters through algorithms of Relative Frequency and 
Forward-Backward [CHAR93]. 

After constructing the HMM and estimating its parameters, the tagger is 
ready to execute the tagging of words and sentences. During the test stage texts 
with known tagging are processed in order to analyse the results and if necessary 
to make the appropriate adjustments. 

During the tagging process the Viterbi algorithm is used in order to 
discover the most probable sequence of tags for a certain sentence. [CHAR93]. 

3 PROPOSED ARCHITECTURE 
3.1 Multiagent approach motivation 

The linguistic knowledge abstracted from a corpus can be: specific to this 
corpus, generic to a group of corpora with texts from similar origin or of validity 
to all treated, language. Various corpora processing can bring information about 
the levels of speciflcity/generality of grammatical categories abstracted. 

On the approaches studied (statistical methods and based on rules), the size 
of the training corpus needs to be sufficiently great to present a reasonable 
precision. 

The use of only one training corpus implies on the lose of dependable 
domain information - some words can present specific uses depending on the text 
type or style. 

Such considerations motivate the application of distributed processing on 
corpora of different text style. A natural form of making this application possible 
is the use fo Multiagent Systems [WERN92]. 

So, we propose an architecture of multiagent system to tag texts, where 
multiple tagger agents exchange information during the training and tagging 
stages. This architecture is composed by a set of taggers specialised on specific 
domains (or text styles) and a generic tagger to avoid redundancies: 

The advantages expected from this approach is: a) tagging precision 
increase with a set of less examples for training; b) higher processing velocity 
during the training stage because of the architecture parallelism and c) better 
tagging performance because of the models separation as we can see on the next 
sections. 

3.2 The society architecture 
The society architecture is made by a generic agent and a set of specific 

agents [ANNE98]. The process is divided into two stages: Training and Tagging. 
During the Training stage the systan acquires, through the corpora of different 
styles, the necessary knowledge to the Tagging stage. The Tagging stage is less 
complex than the Training stage as we can see below. 

During the tagging stage (picture 3.1) the sentence to be tagged and its text 
style are passed to the generic text style). After this stage the sentence can be sent 
to the correspondent agent of a text style and the tagging will be completed, agent 
which makes a preliminary tagging, according to its knowledge (morph-syntactic 
categories common to any 
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Picture 3.1 Tagging system stage 

3.3 Training stage 
During the training stage each specific agent takes as entry a tagged corpus 

in order to acquire knowledge about the morph-syntactic category of each word of 
these corpora. 

The agents knowledge is moulded on HMM and the protocols of 
communication between them had been formalised in a language based on KQML 
(section 4). 

During the system training stage (picture 3.2), the agents acquire their 
knowledge to apply on the tagging stage. To each specific agent one corpus of a 
certain text style is submitted. On a co-operative way. interacting with the other 
society agents, each agent creates its HMM using only specific linguistic patterns 
of the processing style. It is the generic agent work to create HMM with common 
patterns to all style texts taken into account. 

3.4 Agents model 
According to Demazeau's generic agent description [DEMA90], the agents 

of our architecture present the following characteristics: 
The agent's knowledge is represented by Markov's Models which are 

acquired, mainly at the training stage, from the specific corpora and the generic 
agent is acquired through the interaction with the other agents. 

It has been chosen the Statistical Tagging developed by New Lisbon 
University (NLU) described by [VILL95], that was made agent to become a 
society member through a co-operation layer which makes possible to exchange 
information at the training stage. 
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Picture 3.2 System Training Stage 

NLU statistical tagging is basically compounded by three modules: the 
classifier, the HMM constructor and the Viterbi module. 

The classifier module, based on a training corpus previously tagged, 
creates a dictionary and a file which contains the ambiguity classes and the 
existent tags. The dictionary puts the training corpus words together with all the 
grammatical categories associated to them. 

Up to this module the system does not work with words anymore, but 
works with the sequences which were formed by the words ambiguity classes. 

The HMM constructor creates Markov's model using the bigrams and 
relative frequencies based on the ambiguity classes created by the classifier. 

This way, the model is made by the sequences received from the 
classification module (ambiguity tags and classes) added the chosen tag from 
those listed on the respective class of ambiguity and from the estimate probability 
for this tag. 

The estimate probability is calculated using the algorithm of Relative 
Frequency substituting the words by their ambiguity classes and using the 
contextual probability. 

p(W,T) = nP(ti.cI|ti.1) 
Where: 

W is the word sequence, 
T is the tag sequence, 
Cj is the ambiguity class, 
tj is the tag word and 
tu is the previous word tag. 

The probability formula is given for: 

p(ti.Ci | ti-i) = 

where: 

f(ti-l.ti.Ci) 

ftti-0 

Cj is the ambiguity class, 
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tj is the tag word and 
ti_i is the previous word tag. 

Viterbi module discovers which is the most probable tag sequence of a 
corpus from HMM model generated by the constructor. 

3.5 Co-operation layer 
Aiming to accomplish the communication tasks, social reasoning and 

control, agent tagger is "involved" in a module which we call Co-operation 
layer. 

The Co-opweration layer give autonomy capability to the agents and the 
necessary mechanisms to the accomplishment of the co-operative and the team- 
work tasks. This layer implements the negotiation interaction and the messages 
exchange between the society agents on the training and system tag stages. 

Taking decision process 
Through this process the society takes the decision of making the sequence 

generic or of keeping it specific to each agent. 
If all the specific agents send the same sequence to the Generic Agent, it 

can calculate an estimate average probability, store this sequence and send to the 
Specific Agents a message asking than to eliminate from their models the 
sequence which now is a generic one. The estimate average probability is 
calculated on the weighted mean way in relation to the quantity of words of each 
training corpus. This way the biggest corpora will be represented on a more 
relevant way on this average. 

During the tagging stage, the generic agent uses the estimate average 
probability in order to pre-tag the texts received before sending to the 
correspondent specific agent the text style which will complete the tag. 

At the moment the specific agent get to the end of their corpus data, these 
ones send messages to the Generic Agent telling about this event. 

After receiving the message of end of data from all Specific Agents, the 
Generic Agent sends to than message of end of process. 

4 PROTOTYPE IMPLEMENTATION 
The prototype implementation was developed on C++ language for Unix 

machines with Solaris operational system at MASENV environment which uses 
the object classes of DPSK+P. 

The DSPK+P [CARD92] is a library of classes which uses a general 
purpose data structure in order to construct shared objects (classes and instances). 
This data structure is compound by a class name (string) plus a facet set (slots), 
with pairs of value-attribute and defined by class C++ DPSK_OBJECT. This class 
provides the basic construction for the interface C++ of DPSK+P. 

The structural base of interface C++ is compound by: Slots which form the 
fundament to local objects, local objects form the fundament to shared objects and 
lockers (transactions) which support classes and recoverable instances. 

The MASENV (Multi Agent Sofware ENVironment) corresponds to a 
layer which goes on DPSK+P which allows to generate the communication 
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through messages among different processes called agents. These agents are 
connected among themselves so that they can form a net called society. 

4.1 Training Corpora 
On the architecture evaluation three training corpora were used, each one 

with a type of text: academic style, sportive style and religious stype. 
The corpora were submitted to a statistical analysis with the objective of 

showing the differences on the tag sequences found in each text style. On table 4.7 
we present a summary in order to demonstrate that certain tag sequences have 
similar probability in the three corpora while others differs a lot, this shows that 
certain sequences are generic to the corpus used and others are specific to certain 
text style. 

TAG Academic Sportive Biblic 
Noun 30% PREP 29% PREP 33% CONJ 
Verb 23% ARTI 26% PREP 24% PREP 
Pronoun 46% NOUN 43% VERB 41% VERB 
Preposition 57% NOUN 39% NOUN 44% NOUN 
Conjunction 31% ARTI 29% VERB 28% VERB 
Article 86% NOUN 82% NOUN 60% NOUN 

Table 4.7 - Tag Sequences 

5 CONCLUSION AND FUTURE WORK 
This work proposes a distributed architecmre for a corpora tag through the 

Multiagent paradigm. 
We are in need of great volumes of tag corpora which is fundamental to the 

Natural Language Processing and much have been done to achieve this. 
In the last few years, works which apply the Multiagent paradigm have 

emerged in different areas and they have got success on the Natural Language 
Processing. 

Based on this we have studied the Multiagent model. Natural Language 
Process in general and Processing based on Corpus and taggers in special. 

Our proposal wants to contribute not only with the Natural Language 
Processing, in relation to the efficiency and to the tag problem focusing, but also 
to the Multiagent systems by presenting a proposal of distributed architecture and 
tagger agents. 

This work is the result of a proposal of implemented Multiagent 
artchitecture and on tests with an initial set of texts. 

This is a generic architecture which can be used to tag text of other 
languages besides Portuguese. 

The approach used is also independent of the tagger used, so it can be 
applied to other statistical taggers. The implementation model allows the use of 
the agents' co-operation layer and also to use another tagger if adapting the code. 
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One of the system limitation is the impossibility of negotiation among 
agents to take place simultaneously to the learning of each corpus. It was not 

-possible because of the tagger characteristics. The implementation of this 
characteristic would make the system more complex, once there would be the 
necessity of synchronisation, even though, we believe that there could have been 
some profit on performance. 

The characteristics of Mental State of the agents were not formally model 
in this work. We believe that being the negotiation process so simple, such 
characteristics would not be necessary. 

After this work, we intend to make more tests with the developed prototype 
in order to get means to compare the architecture performance in relation to tagger 
agent, as well as with other taggers. The comparison measure should be not only 
in terms of tagging efficiency (correctly tagged words divided by the total of 
words), but also in terms of computer science resources used. 

Our future work will be, for sure, to improve the implemented prototype. 
To recognise the text style to be tagged is a desirable characteristic of the system. 

Improve the negotiation process and make it simultaneous to the 
construction process of each specific agent model is the type of work which we 
believe can make our approach richer. 
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Abstract. Parallel programming demands, in contrast to sequential programming, sub-task 
identification, dependence analysis and task-to-processor assignment. This paper presents 
a new parallelising tool that supports the programmer in these early challenging phases of 
parallel programming. In contrast to existing parallelising tools, the proposed parallelising 
tool is based on a new graph theoretic model, called annotated hierarchical graph, that 
integrates the commonly used graph theoretic models for parallel computing. Part of the 
parallelising tool is an object oriented framework for the development of scheduling and 
mapping algorithms, which allows to rapidly adapt and implement new algorithms. The 
tool achieves platform independence by relying on internal structures that are not bound to 
any architecture and by implementing the tool in Java. 

1    Introduction 

The programming of a parallel system for its efficient utilisation is complex and time consuming, 
despite the many years of research in this area. Parallel programming demands much more than 
sequential programming, since (i) sub-tasks which can be executed in parallel must be identified, 
(ii) the dependence between the sub-tasks has to be analysed and (iii) the tasks have to be mapped 
and scheduled to a target system. 

Due to the high complexity of parallel programming, research on methods, mechanisms and 
tools to support the parallelisation of tasks has been encouraged. Many tools, languages and 
libraries emerged from this research. Even tough, the majority of them only supports the coding 
and result analysis, there are some tools, in this paper called parallelising tools, that address the 
challenging early phases of the development of a parallel program (e.g. CASCH [1], Task Grapher 
[2], PYRROS [3], CODE [4], Meander [5], or [6]). 

Parallelising tools use commonly graph theoretic models for the representation of a program 
to be parallelised. Computation is associated with the vertices and communication with the edges 
of the graph. The graph is generated from an initial description of the program to be parallelised 
(for example in a proprietary task graph language [3]) or it is interactively constructed in the 
environment of a parallelising tool [4]. The Directed Acyclic Graph (DAG) [7] is the most common 
model employed and a lot of recent research has been accomplished in the area of mapping and 
scheduling algorithms (e.g. [8,9]) for this graph model. A shortcoming of this graph model is, 
however, its incapability to model code cycles explicitly. Loops with a large or even, at compile 
time, unknown number of iterations cannot be represented with a DAG. Other graph models, 
like the Temporal Communication Graph (TCG) [10] or the Interactive Task Graph (ITG) [11] 
overcome this limitation. 

While the majority of the parallelising tools is based on only one graph model, which is mostly 
the DAG (e.g. [1-3]), they also often use only a limited number of scheduling and mapping algo- 
rithms. This further limits their area of application, since the scheduling and mapping heuristics 
often have affinity for certain types of applications and parallel architectures. In other words, a 
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scheduling heuristic may produce good results only for some types of programs on certain ar- 
chitectures. An extensible and adaptable design of the parallelising tool is necessary to include 
algorithms tailored for different types of applications and parallel architectures. 

A myriad of scheduling heuristics for the DAG model [12-15] has been developed by the par- 
allel computing community. Scheduling heuristics assume in general a homogenous multiprocessor 
system with fully connected processors. This characteristic is, however, rarely found in a real world 
target machine. Only a few algorithms were proposed that take a realistic hardware architecture 
into account [2,16,17]. One should expect better scheduling results for real world machines from 
these algorithms, but unfortunately no practical comparison of scheduling heuristics has been pub- 
lished. The comparisons found in literature [12-15] use the schedule length as a measure, but not 
the actual execution time on a target system. For a parallelising tool to benefit from the program- 
mers knowledge about the target system, it must provide a scheme for the specification of these 
characteristics in a way that the appropriate algorithms can use them. 

A parallelising tool can benefit from the natural strength of humans, such as information ab- 
straction, pattern matching and problem decomposition, when it leaves some of the parallelisation 
decisions to the user. These decisions can be, for example, the choice of a scheduling algorithm, the 
characterisation of the target machine or the manipulation of the parallel program structure. A 
visual environment, which displays the parallel structure (in two or three dimensions) and allows 
interactive manipulations [4,6] gives the user the most flexibility. In such an environment, the 
programmer can understand, correct and optimise the parallel structure. 

This paper proposes a parallelising tool that addresses the above discussed issues. The paral- 
lelising tool is based on a new hierarchical graph model that integrates multiple graph theoretic 
models, to support a wide range of applications and parallel architectures. Its design allows the 
adaption and modular extension of parallelising algorithms, by integrating new algorithms for 
scheduling, mapping and structure manipulation. A visual 3D environment displays the parallel 
structure of the program, to support the parallelisation decisions of the programmer. For platform 
independence, the parallelising tool is implemented in Java. 

The rest of this paper is organised as follows: Section 2 presents an overview of the parallelising 
tool and introduces its principal components. After the classification and comparison of graph 
theoretic models, a new graph model called annotated hierarchical graph is presented in Section 
3. The subsequent sections then discuss the components of the tool. Section 4 presents the type 
of inputs accepted by the tool, Section 5 describes the interactive visual environment, Section 6 
analyses the module block that provides the algorithms, and Section 7 provides information about 
the output of the parallelising tool. We finally conclude this article in Section 8. 

2    The Proposed Parallelising Tool 

The overall structure of the parallelising tool we are currently developing is shown in figure 1. 
As indicated by the shaded areas in the figure, the tool is divided into four main parts. The 
input part serves for the initial description of the task to be parallelised. Modules within this 
part generate an annotated hierarchical graph from a task defined, for example, in a sequential 
programming language (e.g. C) or as an equation (e.g. in I#TEX syntax). The annotated hierarchical 
graph is further on the representation of the task to be parallelised and forms the core of the 
parallelising tool. In the central part, this graph is visualised in a 3D graphical environment. This 
environment allows the analysis and manipulation of the task's parallel structure and, in addition, 
the possibility to interactively construct an annotated hierarchical graph in a direct way. To 
provide the algorithms and methods for parallelisation, such as structure manipulation, scheduling 
and mapping, the central part interfaces to a module block containing a pool of algorithms. 
Taking the annotated hierarchical graph as input, these algorithms can be executed by the user for 
mapping and scheduling a task onto a target machine. Algorithms that take the target machine's 
characteristics into account, receive this information as an additional input, provided by the user. 
The mapping and the schedule of the task is the principal output of the tool. A programmer can 
then use traditional tools to code the task, guided by the obtained schedule and mapping. A long 
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term objective in the development of the tool is to employ code generators which automatically 
build the program. 

Modules 

Mapping 

Structure & 
ceoer.dence manipulator. 

Analyse & 
graph generator 

Code Generator 

Input; 

Analyse & 
graph generator 

Central pan 

J           Annotated            \*—* 
i\       Hierarchical Graph      £ 

Interactive cons true:; c ]   ^a::sa::on 

l   \^                                            Jß> "~"~"'"""~ ■ 
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Output 

Fig. 1. Overview of the parallelising tool 

3    Annotated Hierarchical Graph 

The annotated hierarchical graph forms the core of the proposed parallelising tool. Unlike other 
parallelising tools, our tool is not based on only one graph theoretic model. It rather tries to 
integrate various graph models and thus to benefit from their combined advantages. Before the 
annotated hierarchical graph is described, we, therefore, analyse and classify the utilised graph 
theoretic models. 

3.1     Graph Theoretic Models 

In a graph theoretic abstraction, a parallel program consists of two activities: computation and 
communication. Computations or tasks are associated to the nodes and communications to the 
edges of the graph. All instructions of one task are executed in sequential order, i.e. there is no 
parallelism within one task. A node can begin execution only when all inputs have arrived and 
outputs are available at the end of the task's execution. 

In [18] a classification scheme for graph theoretic models was proposed. In the context of a 
parallelising tool, a graph model is distinguished according to (i) the parallel computations that 
can be modelled, (ii) the supported parallel architectures and (iii) the available algorithms. 

Within these three classification groups the models are analysed according to (a more detail 
description of the classification scheme is in [19,18]): 

1. Parallel computations 

- Granularity - fine grained, medium grained and coarse grained 
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- Iterative computations - how are iterative computations modelled? 
- Regularity - can the model represent regularity explicitly? 

2. Parallel architectures 
- Data and instruction stream - SIMD and MIMD streams 
- Memory architecture - shared memory (UMA), distributed memory and shared distributed 

(XUMA) memory 
- VLSI systems - VLSI array processors with synchronous data and control flow 

3. Proposed algorithms 
- Dependence analysis and exploitation of parallelism 
- Task-to-processor mapping 
- Scheduling 

To choose a graph theoretic model for the parallelising tool, we have analysed and compared 
the common graph theoretic models using the above classification scheme [19]. From the many 
existing models, DAG, ITG, and TCG, turned out to be of interest for the parallelising tool. In 
the following sections these three models are briefly discussed and the aspects which had influence 
on the annotated hierarchical graph structure are pointed out. 

Directed Acyclic Graph (DAG) The designation DAG [7] merely reflects the graph theoretic 
nature of this graph model, which is consequently directed and acyclic. Interesting for a paral- 
lelising tool are node and edge weighted DAGs, as they well reflect parallel computations with 
non-uniform computation and communication costs. 

The acyclic property of the DAG imposes a restriction on how parallel computations are 
modelled. Iterative computations, which build a cyclic structure, are urged to be modelled in 
a certain form. A coarse-grained approach consists in projecting the iterative part of a parallel 
computation onto one task. On the other hand, in a fine-grained approach only the tasks of one 
iteration are modelled, without taking into account the inter-iteration dependence. For a complete 
fine-grained representation, the iterative computation may be 'unrolled' where each iteration is 
represented by its own sub-graph, and these sub-graphs are connected according to the inter- 
iteration dependence. 

In the last approach, the size of the DAG increases linearly with the number of iterations. 
In practice, this representation may generally be used only for small numbers of iterations. Also, 
the number of iterations has to be known at compile time; iterative computations whose iteration 
number is only known at runtime cannot be modelled with this approach. 

The typical granularity of modelled computations is coarse-grained, as the alternative designa- 
tions as task graph and macro-dataflow graph indicate. The DAG is usually employed for mapping 
and scheduling on distributed-memory architectures. Node and edge weighted DAGs are only used 
for MIMD streams, since no spatial regularity is exploited by the DAG model, which is necessary 
to support SIMD streams. 

A myriad of mapping and scheduling algorithms [12-15] were proposed based on node and edge 
weighted DAGs, whose directed and acyclic properties allow efficient scheduling algorithms. 

Iterative Task Graph (ITG) The ITG [11] belongs to the group of data flow graphs, which 
model the flow of data or signals in a computation. Data flow graphs are directed graphs, but 
in contrast to the DAG model, data flow graphs can incorporate cycles and allow thus a more 
compact representation of computations. For a data flow graph to represent a valid computation, 
cycles must include at least one delay [20]. A delay is represented by a weight associated with 
an edge. It may be expressed as a multiple of a time unit (often denoted D) or the number of 
iterations the communication between two nodes is to be delayed. A delay "breaks" the precedence- 
constraint cycle and allows thus a computable representation of iterative computations. Owing to 
the delays, data flow graphs can model intra-iteration (without delays) and inter-iteration (with 
delays) dependence. The efficient scheme for representing iterative computations, reduces essen- 
tially the number of nodes in a graph compared to an unrolled DAG and allows nondeterministic 
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numbers of iterations. Moreover, iterations are represented in a more intuitive and structured way. 
Since iterative computations can be modelled in detail, the granularity is typically fine-grained to 
medium-grained. 

The Iterative Task Graph also contains edge and node weights to reflect the computation and 
communication costs (figure 2a), which are mainly used for exploiting parallelism, for mapping 
and for scheduling. Unfolding, re-timing or software pipelining are some examples of the trans- 
formations applied to parallel computations represented by this model. The ITG is appropriate 
for computations with arbitrary costs on (shared) distributed memory architectures and VLSI 
systems, given that it explicitly provides computation and communication costs. As no regularity 
is included in the ITG. except for iterative computations, MIMD streams are the typical data and 
instruction streams supported by the model. For SIMD streams, the ITG leaks spatial regularity. 

(a) (b) 

ci/cij- computation cost; wi - communication cost; iD - delay: pi - process 

Fig. 2. The Iterative Task Graph (a) and the Temporal Communication Graph (a) 

Temporal Communication Graph (TCG) The Temporal Communication Graph [10] is based 
on the space-time diagram introduced by Lamport [21]. The TCG is a directed and acyclic graph 
that is process and phase oriented. A computation is divided into sequential processes p\,po. ■ ■ -,pn 

and every node of the graph is associated with exactly one process. A node, associated with 
process pt, has at least one edge pointing to its direct successor on process pt (intra-process 
dependence) and may also have a communication edge to a node of another process pj (inter- 
process communication). A node weight reflects the computation costs and a weight associated to 
an inter-process edge represents the communication costs. Communication between nodes of the 
same process is considered to be negligible. Figure 2b illustrates a TCG with three processes. As 
the graph built by the nodes and edges is a directed and acyclic graph it may be considered a 
node and edge weighted DAG with zero communication costs for intra-process edges. 

A TCG can be described with the aid of the LaRCS [10] graph description language, which 
allows to specify phases of computation and communication. These phases may exploit spatial and 
temporal regularity, for example a loop is a phase of temporal regularity. On the one hand, this 
process and phase oriented perspective of parallel computations limits the flexibility of the model. 
On the other hand, the TCG draws its power from this scheme, as iterative and other regular 
computations are described in an efficient way. The process-oriented view is, moreover, intuitive 
to many programmers for describing computations. 

In the OREGAMI tool [22] the TCG is used for mapping and scheduling. The algorithms 
employed use the regular structure of the TCG. Furthermore, mapping and scheduling algorithms 
based on the Task Interaction Graph (TIG, an undirected graph model [19]) and on the DAG 
model may also be used. As mentioned above, the TCG may be considered a node and edge 
weighted DAG and projecting the TCG along the time axis yields the TIG. 

The TCG, considered as a DAG, underlies the same limitations to model an iterative compu- 
tation as the DAG model itself. However, the TCG can be treated in parts due to its description 
in phases. In the OREGAMI tool, for example, successive portions of the graph are generated for 
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mapping and scheduling as needed. As a result, the complexity and the memory requirement are 
reduced for mapping and scheduling. 

Relations Between the Graph Models Apart from the characteristics discussed above, there 
exist relations between the graph models, some of which were already mentioned during the above 
discussion. These relations can be used to transform one graph representation into another, for the 
purpose of applying an algorithm only available for one graph representation or to yield a more 
compact representation. In figure 3 the relations of the discussed graph models are depicted. Three 
types of transforms between graph models can be defined: reduction, projection and unrolling. By 
reduction of graph properties, a complex graph model can be transformed into a simpler model, 
whose properties build a subset of the complex model's properties. With projection, a graph 
model can be transformed into another model with a more compact representation of the parallel 
computation. The reverse process to projection is unrolling. The ITG, for example, is unrolled to 
a DAG by constructing a sub-graph for every iteration and connecting these sub-graphs according 
to their inter-iteration dependence. 

Fig. 3. Relations between graph models 

3.2    Structure of the Annotated Hierarchical Graph 

A conclusion drawn from the comparison of the graph theoretic models is that none of the graph 
models is universal. In other words, none of the models is capable of representing every type 
of application. DAGs are mainly used for a coarse grained representation, ITGs can only model 
iterative computations and TCGs are limited by its process and phase approach. 

Inspired by the TCG, we developed an hierarchical model that can represent coarse grained 
as well as iterative computations, but which is not limited by a process-phase orientation. The 
principal idea is that a node of a graph can itself be again a graph, as shown in figure 4a. In 
this example, the directed main graph consists of the nodes n\,ri2,nz, of which node n3 is itself 
a directed graph with the nodes 7131,7132,7233. The subgraph is cyclic and represents an iterative 
computation, whose dependence cyclic is broken by the delay D on the edge between node 7133 
and 7^3i. 

Formally, a hierarchical graph G is a pair (V, E), where V is a finite set of vertices connected 
by a finite set of edges E. An element e = (u, v) of E denotes an edge between the vertices 
u,v £ V. An edge (u,v) denotes an edge from u to v and, therefore, (u.v) ^ (v,u). Note, that 
loops and self loops are possible. A vertex u € V can itself be a hierarchical graph Gu, where the 
edges entering vertex u, (v,u) £ E, v £ V, enter the source vertices of Gu and the edges leaving 
vertex u, (u, v) £ E, v £ V, leave the sink vertices of Gu. Source vertices are those vertices which. 
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after removing all edges with delay, have no entering edge and sink vertices are those which, after 
removing all edges with delay, have no leaving edge. In the example of figure 4a node 7131 is a 
source vertex and node 7133 is a sink vertex. 

The hierarchical graph can be made a simple directed graph by substituting the nodes that 
are themselves graphs with their respective graphs. This is shown for the example of figure 4a in 
figure 4b, where node n% was substituted by its graph. 

The hierarchical graph model permits to represent iterative and none iterative computations 
in one graph model in a compact form. Therfore, this graph integrates the DAG and the ITG into 
one model without being limited by a process and phase orientation like the TCG. Depending on 
the purpose, the graph can be interpreted in various ways. An algorithm may consider only the 
coarse grained task graph (only considering the highest hierarchical level) or the sub-graphs can be 
treated separately. It is also possible to expand the graph to a flat directed (cyclic) graph as done 
with the example from figure 4a in figure 4b. The latter can further be unrolled (supposed that the 
number of iterations is known for cyclic parts) to a DAG. The hierarchical graph model provides 
the flexibility to represent a wide range of applications and still all the algorithms proposed for 
the three graph models discussed above can be employed. 

(b) 

Fig. 4. Hierarchical graph (a) and expanded hierarchical graph (b) 

Annotation Associated with every node of the hierarchical graph is an annotation. This an- 
notation is in textual form and represents the computation executed by the node. Code in C or 
VHDL are two examples for textual annotations. The annotation may serve for the estimation 
of the computation time or it may be used for automatic code generation at the output of the 
parallelising tool. Moreover, the textual task description allows to estimate the execution costs of 
the task depending on the architecture of the target machine. 

The communication of the edges is also described by an annotation, which represents the data 
structure transmitted on the edge and the amount of data. Again, this'can be used to estimate the 
communication costs or for the code generation at the output of the tool. For example, a send() 
and a receive () command may be inserted, with the respective data structure as parameter, in 
the code of the source and sink node of the edge, respectively [1]. With the knowledge of the amount 
of data transmitted on the edge, the communication costs can be estimated according to "startup 
cost+transmission speedx amount of data" [11], considering the target machine's characteristics. 

The interpretation of the annotations is left to the various algorithm and, thus, the annotated 
graph structure is not linked to a certain form of task or communication representation. Also, the 
graph representation of a program is platform independent, as costs can be estimated only when 
needed. Note, that a textual description of a task or communication is, of course, not obligatory, 
and the user can also provide estimated costs. 
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4 Program Input 

A program to be parallelised must be initially described in an adequate form to be analysed in a 
parallelising tool. This description is crucial for the exploitation of parallelism. Various approaches 
for this initial description are used in parallelising tools. Parallelising compilers commonly use an 
augmented sequential programming language (e.g. HPF, pC-^, Split-C) and concentrate on the 
parallelisation of (cost intensive) loops [23]. The CASCH parallelising tool [1] takes as input a 
program with procedure calls and creates a node for each procedure in a DAG representing the 
program. A proprietary task graph language is used by PYRROS [3] for the construction of the 
DAG. In the CODE programming environment [4] a subset of the C programming language is 
used to define the tasks computation, which is primarily used to call coarse grained functions. The 
structure of the DAG is constructed interactively in CODE's environment. In [6] a set of algebraic 
equations is entered in an iterative editor, from which a dependence graph is generated. 

The core of our parallelising tool is the annotated hierarchical graph. Consequently, every initial 
input from which such a graph can be generated is feasible. Therefore, the proposed parallelising 
tool is not limited to any particular form of initial description. The input is rather modularised to 
allow different initial descriptions. This is even important, as the tool supports coarse grained as 
well as iterative computations. The above referenced parallelising tools use one initial description 
depending on the type of computation they support. 

As shown in figure 1, we currently implement two types of initial task description. One is 
a description as simple algebraic equations. From certain equations found in signal processing, 
for example recurrence equations, it is straight forward to generate a dependence graph [20]. In 
contrast to [6], an equation is, however, specified in textual form (with a small subset of the ET^X 
math syntax) and not interactively entered. The equation is then parsed and analysed and a 
hierarchical graph is generated. The functions executed by every node are specified in the textual 
annotations of the graph. Of advantage is the utilisation of the DTgX syntax, since any editor 
that supports ETEX can be used to specify the equation comfortably. The graph generated form 
an equation has typically an iterative structure. 

The other type of description that generates iterative structures is the specification of loops 
with a simple subset of the C language. Rather than parsing a hole program, this input analyses 
only small code fragments consisting of nothing but a loop that is parsed and analysed for the 
construction of an iterative graph. For the analysis of the code, techniques found in automatic 
program parallelisation are employed [23]. The annotations of the graph's node consist of the code 
parts found in the initial description of the task. 

Coarse grained computations can be specified as an interactively constructed graph in the 
visual environment,which is presented in the next Section. 

5 Visual Environment 

The central part of the parallelising tool is a visual environment (figure 1). Here, the graphs gen- 
erated from the initial descriptions are visualised. When fully implemented, the graph is displayed 
in three dimensions and the programmer can change the viewpoint, edit annotations and manipu- 
late the structure of the graph. Moreover, a full annotated hierarchical graph can be interactively 
constructed in this visual environment. It is also possible to construct the coarse grained structure 
of a program and to use the other input types to generate finer grained iterative computations 
that can be integrated in the overall structure. We are currently integrating a first experimental 
environment into the parallelising tool. Figure 5 shows the graph of a localised matrix-matrix 
multiplication (N=4) visualised in the experimental environment. 

With the interactive environment, the parallelising tool can benefit from the natural strength 
of humans, such as information abstraction, pattern matching and problem decomposition. The 
programmer can take decisions, which could not, or only unsatisfactorily, be taken automatically. 
These decisions can be, for example, the choice of a scheduling algorithm or the manipulation of 
the parallel program structure. In such an environment, the programmer can understand, correct 
and optimise the parallel structure. 
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Fig. 5. Visualised graph for a matrix-matrix multiplication (N=4) 

The scheduling, mapping and structure manipulation algorithms, which can be applied to a 
graph, can be chosen from a set of algorithms provided by the module block, to which the visual 
environment interfaces. 

6    Module Block 

The module block is responsible to provide the parallelising algorithms for our parallelising tool. 
It is conceived to provide a wide range of algorithms and to be adaptable and extensible for new 
algorithms. To achieve this goal, we developed an object oriented framework for scheduling and 
mapping algorithms. 

The framework was implemented in Java and we employed the Collection framework of Java 
2 (aka Java 1.2) for the basic data structures. It is composed of the following packages: 

- graph - This package comprises a class hierarchy for a general graph framework. On the top of 
the hierarchy is a multi-graph which permits directed or undirected edges, cycles and parallel 
edges and the hierarchy goes down to trees and directed acyclic graphs. In conjunction with 
this classes, basic graph algorithms like BFS, DFS, topological order or connected components 
are provided. 

- hierarchicalgraph - This package contains the classes for the annotated hierarchical graph. 
It is based on the graph package and provides the elements for the hierarchical structure and 
the annotations. As the hierarchical graph forms a superset of the DAG and ITG model, it 
can be used to represent these models. 

- schedule - In the schedule package, the classes to represent mappings and schedules of 
programs represented by graphs are provided. This includes classes for the simple mapping 
of sub-tasks to processors (clusters), the definition of the relative order among the sub-tasks 
of the same processors, and the exact schedule of sub-tasks with their starting and finishing 
times. Methods for the visualisation of a schedule as a Gant chart are also included. 

- architecture - This package is used for the definition of the target machine's architecture. 
It is also based on the graph package, as the architecture of a parallel machine is described 
as a graph. Generally, this is an undirected graph (however a directed graph is also possible), 
where the nodes represent the processors and the edges the communication links. Weights 
associated with the processors represent their relative processing speed and the weights of the 
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links their communication speed. Common architectures, as meshes, hypercubes or rings, are 
generated by method invocations. 

The hierarchical graph class provides basic functions that are commonly used by scheduling and 
mapping algorithms. Examples are the calculation of the bottom or top level of a node, the critical 
path, or the unrolling of cycles. These functions reduce the effort for a programmer to implement 
a new scheduling algorithm. 

As the annotated hierarchical graph is based on multiple graph models, algorithms based on 
different models can be employed in the parallelising tool. The most scheduling and mapping 
algorithm were proposed for the DAG model [12-15]. As mentioned in the introduction, only few 
algorithms take the target system's architecture into account. Since we expect better results from 
these algorithms, three of them - MH [2], DLS [16], BSA [17] - were among the first algorithms 
implemented for the parallelising tool. Most of the DAG algorithms analyse the structure of the 
DAG for scheduling. New approaches exist that take genetic algorithms into account [24,25]. 

Apart from the DAG algorithms, algorithms based on the ITG are being implemented. For 
this graph model unfolding, re-timing and software pipelining are popular techniques [26,27,11]. 
Some of these algorithms utilise again DAG scheduling algorithms for partially unfolded ITGs. 

To benefit from regular structures of graphs, especially from graphs derived from equations, 
techniques known from the VLSI processor design [20] are employed. These techniques use the 
regular structure to project (map) nodes to processors and to schedule synchronous executions. 

7 Output 

The output of the tool is the parallel structure of the program, the schedules and mappings. From 
the initial description of the program the user obtained a parallel structure displayed in the visual 
environment. By manipulating this structure, applying mapping and scheduling algorithms the 
user receives a guideline for the implementation of the program with the classical parallel tools. The 
user can read off the partition into subtasks from the displayed graphs as well as the dependence 
between these sub-tasks. The schedules displayed as Gant charts allow the programmer to define 
the execution order and/or starting time of the sub-tasks. The tool permits the programmer 
to experiment with mapping and scheduling algorithms before the actual implementation of the 
program. This is in contrast to classical parallelisation tools that display the performance of the 
program after the implementation. 

A long term objective of the parallelising tool is to utilise code generators for the implementa- 
tion of the program. A code generator can include communication and synchronisation primitives 
in the code annotated to the nodes, according to the edges of the graph [1,4]. This can be done in 
a platform independent form (e.g. C with MPI functions, VHDL) or by utilising communication 
primitives for the specific architectures and platforms. 

8 Conclusions 

This paper presents a new parallelising tool based on graph theoretic models. Its design is platform 
independent as it is implemented in Java and as its internal structures are not bound to any 
architecture. 

We proposed a new graph theoretic model, called the annotated hierarchical graph, that inte- 
grates the wide spread models DAG, ITG and TCG. This graph model renders the tool universal, 
since it is capable of representing coarse grained and iterative computations in a single model and 
in a compact form. Existing parallelising tools are limited in their range of supported applications. 
With the annotated hierarchical graph, techniques from different areas of scheduling and mapping 
research are integrated into one tool. 

We described the elements of the parallelising tool and pointed out its modular structure. The 
proposed framework for the development of parallelising algorithms allows to rapidly implement 
and adapt new algorithm for the parallelising tool. Moreover, the tool permits to develop new 
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algorithms without the need for a proprietary test environment. The visual environment supports 
the user in parallelising decision, because the display of the parallel structures of a program help 
the user to understand, correct and optimise these structures. 

In the future, the advantages of this new tool has to be demonstrated with the parallelisation 
of programs that benefit from the graph's hierarchical structure. 
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Abstract. Nowadays Distributed Object Oriented Environments are becoming 
widely used. One of them is OMG's Common Object Request Broker 
Architecture (CORBA). The paper deals with the short description of a tool 
named U_CORBA, which supports the design process of CORBA applications. 
The new tool was built under the MICO CORBA implementation. It gives 
opportunity of creation of the class diagram of the application using the UML 
notation and based on it generating the IDL files and application C++ headers. 
The tool also includes some management functions, which allow a user an easy 
way to visualize the state of the CORBA environment as well as managing it. 

1     Introduction 

Nowadays Object Oriented models are being used in many applications. On the other 
hand with the increased necessity of enabling computers to work together a new kind 
of programming and working environments are now becoming widely used - the 
Distributed Object Oriented Environments. It is still too early to make guesses on 
which one of these systems will become the standard. So far the strongest contestants 
are IBM's System Object Model (SOM); Microsoft's Distributed Object Linking and 
Embedding (OLE); OMG's Common Object Request Broker Architecture (CORBA). 
Each one of them has their advantages and drawbacks. The paper deals with the short 
description of a tool named U_CORBA, which supports the design of CORBA 
applications. The CORBA environment was chosen, as it is the most advanced one in 
terms of standard definition. Unlike some others, it has already available full 
programming and runtime environments. 
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CORBA brought new concept used for the creation of applications in a distributed 
manner. It is a solution for developing new application or making together some 
working application [5,8]. Although there are a lot of different developing 
methodologies and tools supporting application design, like UML, VPE, TRAPPER 
and others working at different environments there are no such tools dedicated for 
developing CORBA applications [2,3,4,7,9]. For designing a CORBA application, 
Rational Rose is a commonly used environment [7]. This is the main motivation of 
the work presented in the paper. The main objective of this work is to design and 
implement a graphical tool that helps in developing CORBA applications. The 
presented tool named U_CORBA gives opportunity to create the class diagram of the 
application using the UML notation and based on it generating the IDL files and 
application C++ headers. Additionally the tool includes some management functions, 
which allow a user an easy visualization of the state of the CORBA environment as 
well as of managing it. The accessible functions are similar to these ones which are at 
OrbixManager from IONA Technologies [1]. It gives a user some benefits in 
designing the CORBA applications during the development process. The prototype of 
the tool was developed with the QT 1.44 library and MICO 2.2.5 [5] on Linux 2.2.5. 
The structure of this paper is as follows. In section 2, a brief overview is presented of 
the CORBA architecture. In section 3, the main functionalities of the U_CORBA tool 
are described. Some implementation details are described in section 4. Section 5 
presents an example of the use of the tool. Section 6 compares the tool to related tools 
supporting Object Oriented development. Finally, section 7 presents some 
conclusions and describes ongoing work. 

2     CORBA Overview 

CORBA stands for Common Object Request Broker Architecture and is a platform 
defined by OMG - the Object Management Group, a consortium of several companies 
and universities working together in its definition. The main purpose of the OMG is to 
define a platform for heterogeneous distributed computing in which very different 
hardware will work smoothly together - from super computers to embedded systems - 
independently of the operating systems, programming languages and network 
protocols they might be using. 

In CORBA objects interact with each other by means of interface definitions, with 
the information provided by these interfaces, potential clients of object services are 
able to know what to expect from objects and how they should interact with them. 
This interface is defined in OMGs IDL (Interface Definition Language) which 
enables object services to be available to other objects written in almost any 
programming language. By using IDL, the programmer lets the communication 
infrastructure know the format of all messages an object can receive and send so that, 
if necessary, they can automatically be transformed from one data representation to 
another, providing transparent communication between different systems. The 
communication infrastructure defined by OMG is called the OMA (Object 
Management Architecture) and it is a set of protocols and services definitions that 
allow very different objects to interact freely with each other. OMG defined a set of 
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standard interfaces and functions for each component of the OMA. All CORBA 
services communicate with each other through an ORB (Object Request Broker) that 
handles and delivers all messages from one component to another so programmers do 
not have to worry about distribution details, and can concentrate on solving the real 
problem at hand. 

When designing a CORBA application two files are generated: a skeleton and a 
stub (figure 1). These files, when compiled and linked together with the service 
implementation will act as translators between the object and the ORB. Because of 
this the clients and object implementation can even be written in different 
programming languages, one just has to generate the skeleton and stubs using the 
appropriate IDL compilers. 

IDL 

Client 
Code £A 

Stub 
Code 

Skeleton 
Code 

Obj. Impl. 
Code 

Language Compiler 
Linker 

•     Client 

Stub 

Object 

Skel. 

Object Request Broker 

Fig. 1. The structure of CORBA application 

There are currently some official IDL languages mapping specifications 
standardised by OMG: for Java, C, C++, Smalltalk, Ada. Besides these there are other 
mappings currently not supported by any standard, and many other IDL compilers are 
specific for a given ORB. As OMG does not force any communication protocol 
between the skeletons and the ORB (the HOP protocol is in common use), a given 
skeleton will only be able to talk with its corresponding ORB. What happens if the 
ORB being used is changed? That is not a problem, new skeletons must be generated 
using the new IDL compiler and linked with unchanged object implementations - thus 
achieving instant integration. Both client and object implementation are isolated from 
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the ORB by IDL interfaces so that the client does not even have to care about the way 
objects are implemented, making modifications easy. 

For our purpose we have chosen the MICO CORBA implementation, which is a 
complete CORBA 2.2 compliant implementation. MICO is freely available. The 
difference to other freely available implementations is that MICO is developed for 
educational purposes and that the complete sources are available under the GNU- 
copyright notice. Among free ORB with C++ mapping this one provides the most 
impressive list of features: 
• Modular ORB design: new transport protocols and object adapters can easily be 

attached to the ORB - even at runtime using loadable modules, 
• It offers an interface for inserting and extracting constructed types that were not 

known at compile time, 
• Full BOA implementation, including all activities modes, support for object 

migration, object persistence and the implementation repository, 
• BOA can load object implementation into clients at runtime using loadable 

modules. 

3     Application Design Using U_CORBA 

The presented tool helps CORBA users in developing CORBA applications (servers 
and clients) by generating the skeleton of the application by means of IDL files and 
application C++ headers. A specially designed graphical interface gives the user 
opportunity of creating the application class diagrams using UML notation and based 
on it generating the IDL and application C++ header files. The tool is equipped with 
an embedded user's editor for writing application body. The main window of the 
application containing three parts is presented in figure 2. On the top there is a popup 
menu. First part of the menu gives the basic editor functions like creation of the new 

m Diagram 1 _ n x 

File    Edit    View    Diagram    £ode: Help 

;:;D^y::@.//:::^l 

Fig. 2. The main window of U_CORBA tool 

diagram, opening of the saved diagram, saving prepared diagram, printing the 
diagram and quitting the tool applications. Options for opening, saving and printing 
open the standard dialogs for choosing the files and printers. Then there is the group 
of options for editing the documents containing such common used functions like: 
Cut, Copy, Paste, etc.  The View option allows modifying the appearance of the tool 
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on the screen. The specific functions of the tool are accessible using Diagram and 
Code options. Using the Diagram option the user can create a class diagram and when 
using the Code option can generate IDL files and C++ application headers and writes 
the body of an application. Every option starts the specific action for the chosen 
functionality to be performed. For example New Class from Diagram option opens 
the dialog in which the information about the new class is collected. 

The toolbar contains iconic shortcuts for a couple of the menu options. Starting 
from the left side there are: 
• New Diagram - creates the new application diagram, 
• Open - starts the open file chosen dialog 
• Save - saves editing diagram, 
• New Class - starts the new class dialog, 
• New aggregation - inserts the new aggregation, 
• New Generalization - inserts the new generalization, 
• Help - gets the information about accessible options. 

diagram X 

Name of the class OK 

NewClass 

List of attributes 

Cancel 

Add 

List of operations 

Add 

Fig. 3. The New Class dialog window 

Next part of the main window in the central widget where the diagram is draw. The 
appropriate way of drawing the elements of the diagram is the standard described by 
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the OMG. When the new class is inserted to the diagram the set of dialogs is used to 
collect information about class properties (figure 3). 

This dialog contains the line editor for the name of the class specifying two list 
boxes that contain all the attributes and operations. The attributes and operations are 
performed by the set of buttons (Add, Edit, Delete), All actions performed in the 
dialog can be confirmed by the OK or discarded by Cancel buttons, respectively. 
After adding or editing the list of attributes or operations, a new dialog box is opened 
for attributes or operations specification. In the attribute dialog box (figure 4) the 
information about attribute properties is collected. The combo boxes provide the set 
of choices for the attribute type and export control. The default type is set to "int" and 
export control to "private". A similar dialog box is defined for operations. Theirs 
functionality is similar to the one described in the Attribute dialog. The default 
operation type is set to "int" and export control to "public". 

diagram <Z- 

Attribute Name OK 

Name I 
Cancel       f 

Attribute Type 

int 

Attribute Export Control 

private 

Fig. 4. The Attribute dialog window 

In contrast to other available in CASE tools code generators our CORBA IDL 
generator (Code option) produces only CORBA IDL specification and C++ headers 
files. To produce executable code after translation of IDL files to architecture specific 
C++ headers and building the implementation using programmer editor the source 
code of the application is ready to compilation. 

Presently the tool covers only a part of the functionalities that are normally 
supported by CASE tools, however experiments performed using our prototype 
indicate that it is useful during the design of CORBA applications. The prototype is 
being extended to support all functionalities required by a full development process. 
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4     Some Implementation Details 

Presented in the paper tool consist of two parts, the management and development 
tools. The management tool allows a user an easy visualization of the state of the 
CORBA environment as well as of managing it and the development tool supports the 
process of design the CORBA application by drawing the class diagram and 
generating the IDL files and application C++ headers. Figure 5 gives an overview of 
the U_CORBA environment layers, arrows indicate the communication between 
different environment components. Tools do not directly call the system or MICO 
services. The manager tool operates on the MICOs Implementation Repository (IR) 
through the program provided in the MICO package, which is called "imr" and calls 
the routines from the QT libraries for graphics and from "imr" for operations on the 
IR. The class diagram that represents the tool functionalities cooperates only with the 
QT library since it provides all the required functionality. The main tasks of the 
manager are: 
• The management of the implementation repository daemon, 
• The management of entries into the implementation repository, 
• Visualization of the current status of implementation repository daemon. 

imr —► 
4— 

Manager Class 
Diagram 

T 

'    \** tv 
MICO 2.2.5 NJ QT 1.44 

i 

Linux Kernel 2.2.5 

Fig. 5. Layers of U_TOOL 

There are two main problems that appear during developing tool implementation: 
definition of the data structures for class diagram representation and the translation 
grammar for the application C++ headers and IDL code generation. 

The attribute name and type describe the class attributes. The name is stored in the 
string and the type can be set to one of many possible options. That set includes the 
most popular types like int, float, string, char, etc. The class abstracting the attribute 
has to be equipped with the copy constructor and overloaded assignment operator for 
the handling of these structures is not just the question of bit to bit copy. Such 
solution gives the opportunity of future tool development. Considering attributes in 
context of the OOP one more feature has to be added - a visibility. Visibility specifies 
the way of accessing the attributes. The name, type, and list of attributes and visibility 
describe the operations. Name, type and visibility describing operations are stored in 
similar way as for attributes, but the list of attributes causes more problems. It can be 
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empty or the number of eventual attributes is unknown. Then operation attributes are 
stored in the list. The list contains only the pointers to the objects. That requires a lot 
of caution while processing the entities of operations. The list itself is hold by the type 
provided by the Qt toolkit. 

The code is generated for the specific class on the class diagram. The name of that 
class indicates the name of the file. Different suffixes are added depending on the file 
type generating * Ml for the IDL files and *.h for the application C++ headers. The 
process of file generation is divided into three steps. In the first step the class name 
using the above described procedure is established. During the second step 
information about the links between classes is retrieved from the association database 
created from the class diagram, it causes some extra lines of code at both generated 
files. In the last step the analysis of attributes and operations is performed. As long as 
the number of used types for the attributes or operations is limited to the basic ones 
the process of generation of both files is not complicated. However the generation of 
application C++ headers for complex types is not so obvious, usually attributes and 
operations belonging to the one type of visibility are grouped in one place, and 
depending on the convention those groups are placed in different places in the 
generated header file. We assume that for the more clear declaration reading the 
group with public visibility comes first. 

5    An Example of Using U_CORBA 

To present the functionalities provided by a tool, we present the following two simple 
examples. Let's consider the simplified version of a bank account server. It is 
responsible for managing a user account by depositing and withdrawing the required 
sum of money, and reporting about the current state of the account only. 

si Diagram 1 

File      Edit      View Diagram     Code 
;:; D G» Hiilja. S >|;:|*?| 

BankAoaount BankClient 

int 
ajacountNumher 
string userName 
float balance 

string name 

int deposit 
(float amount) 
int withdraw 
(f loat ajnount) 
float report () 

int takeCredit 
(float amount) 

Fig. 6. Class diagrams for the server and client respectively 
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The server needs to hold some information, like current balance, account 
identification number, etc. Let's assume that a bank client is interested in obtaining 
the credit. Then both of them can be represented as objects in CORBA environment 
as presented in figure 6. 

After defining both class diagrams using the implemented graphical environment 
using Code option the IDL files and C++ application headers for server and client are 
generated. 

The IDL files generated for the server and client respectively are presented below. 

interface bankAccount 
{ 
attribute long accountNumber; 
attribute string userName; 
attribute float balance; 
long deposit(in float amount); 
long withdraw(in float amount); 
float report(); 

} 
interface bankClient 
{ 
attribute string name; 
long takeCredit(in float amount); 

} 

The application C++ headers generated for the server and client respectively 

class bankAccount 
{ 
private: 

long accountNumber; 
string userName; 
float balance; 

public: 
long deposit(float amount); 
long withdraw(float amount); 
float report(); 

} 
class bankClient 

{ 
private: 

string name; 
public: 

long takeCredit(float amount); 
} 

After translation of generated IDL files to the architecture specific C++ headers the 
user can start to build the implementation of the server and client behavior using the 
Code option of the tool (programmer editor). 

As a second example let's consider the management system of relational database 
(RDBMS). The class diagram for an example is presented at figure 7. The 
management system consists of some servers (DB) distributed among the different 
computers (multiserver). Used at the diagram the diamond symbol represents 
aggregation, when a triangle symbol represents inheritance. 
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Fig. 7. Class diagram for DBDMS system 

The way of data partitioning between different servers can be vertical or horizontal 
and data can be additionally replicated. Transactions in such distributed environment 
are of two types: queries, which involve request for information and updates, which 
generate changes to the data entries in the database. The queries can be proceeded 
locally or it may be necessary to access remote sites. Then the "SQL module" 
represents the CORBA client. Different CORBA objects (databases, tables) can be 
moved in the whole distributed environment (middleware interface). 

The part of generated by the tool IDL file for the above described database 
management system is presented below. 

{ 
module RDBMS 

// abstract table 
interface Table 
{ 
attribute string strName; 
attribute boolean Temp; 
void addRow(in long ISpace) 
}; 

// name of the table 
// flag for temp, sector 
// space for the new row 

// abstract database 
interface DB 
{ 
attribute string strName; // 
attribute Table intfcTable[]; // 
void ClearTempSector();      // 

cleans  the temporary sector of the database 
void AllocateSpace(in Table forTable);  // allocates 

physical space 

name of the DB 
set of Tables 
operation that 
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interface DBMSSQL : DB 
{ 
attribute boolean bAllowTruncate;    // flag to allow 

truncation of the objects (like table) 
void setTruncate(in boolean yesno);   // allow or 

disallow 
}; 

}; 

6    Comparing U_CORBA with Other Tools 

The main aims of using development-supporting tools can be pointed by: 
• Accelerating the development time, by improving communication among various 

team members, 
• Improving quality, by mapping business processes to software architecture, 
• Increasing visibility and predictability by making critical design decisions explicit 

visually. 
Comparing our tool with other available tool we can conclude that its 

functionalities with respect to supporting the CORBA application development 
process is comparable. In Rational Rose some functions supporting the CORBA 2.2 
application development are included. It supports forwarded and reverse engineering 
of CORBA IDL. It supports CORBA specific function such as; Stereotypes, 
Constants, Enums, Exceptions, Interfaces, Structs, Typedefs and Unions. It includes a 
built-in color-coding editor, which allows editing of IDL syntax files from within 
Rose 98 [7]. Similar functionalities can be found in COOL-Jex, which support 
developing of CORBA application by generating IDL files for forwarded as well as 
for reverse engineering [9]. From the other hand the whole functionalities such tool 
like Rational Rose is much wider and include component-based development, multi- 
language development, UML modeling, etc. The main advantage of using our tool is 
that it supports not only developing process but also some useful CORBA 
environment management functions are provided. 

7     Conclusions 

This is an ongoing project. Presently we finished building a prototype. The 
prototype still misses a lot of features that could be implemented in the further 
versions. However, experiments performed using our prototype indicate that the 
presented tool will be useful for designing CORBA applications. No specific 
knowledge about the IDL language is required to build CORBA objects. After 
translation of the IDL files to the architecture specific C++ headers the user can start 
to build the implementation of the server/client behavior. The tool helps the developer 
out in IDL knowledge and allows him to concentrate on the essential part of 
implementation. The decision of using 00 Technology for coding and a GPL 
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implementation of the CORBA system will contribute to ease the implementation of 
the full set of desired functionality. Moreover, those decisions make the development 
of further aspects and kinds of experiments possible, since all layers of the 
implementation are accessible. Having the Rose tool so sophisticated and supporting 
so many features and recently also ported to the Unix systems, the question about the 
motivation of building other tool with a similar functionality arises. With a tool 
released under the General Public Licence it is possible to freely access the code, 
develop new features and made it more efficient. The dedication to the MICO that we 
have followed in this project allows taking some benefits and widening the 
functionality to areas that are not possible for a tool that is so general like Rose. That 
all opens a chance for a flexible support for developers that are not capable of 
obtaining the commercial expensive tools. 
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Abstract. In this paper, we investigate the improving capability of ac- 
curacies and the parallel efficiency of ensemble self-generating neural 
networks (ESGNNs) for classification problems and the time series pre- 
diction on a MIMD parallel computer. The results of our computational 
experiments show that the more the number of processors increases, the 
more the improvement of the accuracy is obtained for all problems, and 
the parallel efficiency is obtained for all problems.1 

1    Introduction 

Neural networks have been widely used in the field of the intelligent information 
processing such as classification, clustering, prediction, and recognition. Gen- 
erally, neural networks have to be decided the network structures and some 
parameters by human experts. It is quite tricky to choose the right structure of 
neural networks suitable for a particular application at hand. In order to avoid 
these tricky and difficult situations, self-generating neural networks (SGNNs) 
are focussed an attention because of their simplicity on networks design [1]. 
SGNNs are some kinds of extensions of the self-organizing maps (SOMs) of Ko- 
honen [2] and utilize the competitive learning algorithm which is implemented 
as a self-generating neural tree (SGNT). 

The SGNT algorithm is proposed in [3] to generate a neural tree automati- 
cally from training data directly. Originally, this SGNT algorithm is developed as 
a hierarchical clustering algorithm. Therefore, it may be a natural consequence 
to show a good performance in applying to the classification or clustering prob- 
lems. In our previous study concerning the performance analysis of the SGNT 
algorithm [4], we showed that the main characteristic of this SGNT algorithm 
was its high speed convergence in computation time but it was always not best 
algorithm in its accuracy comparing with the existing other feed-forward neu- 
ral networks such as the backpropagation (BP) [5]. In order to acquire more 
higher accuracy of SGNNs, we introduced the ensemble averaging approach to 
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improve the generalization capability of SGNNs which is fully utilize the high 
speed convergence characteristic of the SGNT algorithm [6]. 

In this paper, we investigate the improving capability of accuracies and the 
parallel efficiency of ensemble self-generating neural networks (ESGNNs) for clas- 
sification problems and the time series prediction on a MIMD parallel computer. 
We analyze MONK's [7] problems in classification and the Mackey-Glass time 
series [8] in time series prediction which are given as benchmarks. 

This paper is organized as follows: Section 2 outlines the learning system 
on neural networks and describes accuracies as criteria for evaluation for clas- 
sification and time series prediction. Section 3 describes SGNNs. In Section4, 
we combine the ensemble averaging method with the SGNN model in order to 
improve the generalization capability. In Section 5, we present how to perform 
the ESGNN on the parallel computer. Section 6, we describe experimental de- 
tails. Section 7 is devoted to investigate the improving accuracy and parallel 
performance for ESGNNs through a simulation study, and Section 8 concludes 
the paper with some remarks. 

2    Learning System and Accuracies 

A training data set D consists of data {(xi, yi), i = 1,..., N} and a test data 
set T consists of data {(xi,yi),i = 1,...,M}. Here, Xi is the input and yi is 
the desired output, and factors of D and T are independent of each other. The 
learning task is to construct a learning system from this training data set D 
in order to classify/predict y by the output of this learning system f(x) for 
system input x. After constructing the learning system, then the accuracy of 
this learning system is evaluated by the test data set T (see Fig. 1). Next, we 
show how to evaluate the performance of the learning system for classification 
and time series prediction, respectively. 

In classification, the objective of the learning system is to classify success- 
fully on the test data set T. The input data X; corresponds to the discrete 
p-dimensional attributes vector and the output y, corresponds to a class label, 
for {Xi,yi) G T. If f(xi) and yi are the same label, this case may be considered 
to be success, otherwise failure. Therefore, the accuracy of this learning system 
is evaluated by counting these success and failure cases for a given test data. 
The most commonly used criterion for the accuracy of classification system is 
misclassification rate which is the ratio of the number of failures to the number 

desierd output 

learning 
system input data 

accuracy 

Fig. 1. Functional diagram of the learning system 
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of test data as follows: 

, . number of failures . . 
misclassmcation rate = : : :— . (1) 

number ot test data 

In this paper, we use above defined misclassification rate. 
In time series prediction, the objective of the learning system is to predict the 

future on the test time series data set T. The input data Xi involves processing 
of patterns that evolve over time. In neural networks prediction, temporal infor- 
mation of the series data is spatially brought to the network by a p-dimensional 
time-lagged vector; 

Xt+L = f(Xt,Xt-m,   ■■, Zt-(p-l)m) i (2) 

where xt+L is the approximation of the real time series data xt+L on time t + L. 
Here, xt+L is corresponding to the desired output yt for x,. As a criterion for time 
series prediction system, we use the following ARV (average relative variance) 
which is commonly used in this time series prediction community [9], 

ARV = £,6r(w-E[yi])2 ' (3) 

which is the mean squared error (MSE) divided by the variance of desired outputs 
on the test data set T. Here, E is the expectation value on statistical sense, j/j 
is the real time series data and /(#») is the output of the learning system, 
respectively. 

3    Self-Generating Neural Networks 

SGNNs proposed in [3] are based on SOMs and traditional AI unsupervised 
learning methods such as COBWEB [10]. SGNNs are implemented as a self- 
generating neural tree (SGNT) architecture. Generally, the SGNT algorithm 
has no learning parameters. The structure of the SGNT changes dynamically 
in training. The SGNT algorithm decide the structure of the SGNT after all 
training data are added in leaves of the SGNT. 

The SGNT algorithm is defined as a tree construction problem how to con- 
struct a tree structure from the given data which consist of multiple attributes 
under the condition that final leaf neurons correspond to the given data. Before 
we describe the SGNT algorithm, we denote some notations. 

— input data vector : e*; e$ = (en, e^, • • ■, ejP). 
— j-th neuron : ny, rij is expressed as ordered pair (WJ,CJ). 

— weight vector of rij : Wj\ Wj = (WJI,WJ2, ■ ■ ■, Wjp)- 
— the number of the leaf neurons in rij : Cj. 
— tree is expressed as ordered pair ({rij}, {Ik}), where {rij} is the neuron set 

and {Ik} is the link set of the tree. 
— distance measure : d(ej,Wj); we use Euclidean distance measure. 
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— winner neuron for e; : nWin. 

The SGNT algorithm is a hierarchical clustering algorithm. The pseudo C 
code of the SGNT algorithm is given as follows: 

Algorithm (SGNT Generation) 

Input  : 
A set of training examples E = {e_i},  i = 1,   ...   ,  N. 
A threshold value XI >= 0. 
A distance measure d(e_i,w_j). 

Program Code  : 
copy(n_l,e_l); 
for  (i = 2,  j = 2;  i <= N;  i++) { 

n_win = choose(e_i, n_l); 
minDistance = distance(e_i, w_win); 
if  (minDistance > XI) { 

if  (leaf(n_win))  { 
copy(n_j, w_win); 
connect(n_j, n_win); 

} 
copy(n_j,  e_i); 
connect(n_j, n_win); 

} 
update(e_i, w_win) 

Output   : 
Constructed SGNT by E 

In the above algorithm, some sub procedures are used. Table 1 shows the sub 
procedures of the SGNT algorithm and their specifications. 

In order to decide the winner neuron nwin, competitive learning is used. If 
a rij includes the nWin as it's descendant in the SGNT, the weight Wjk (k = 

Table 1. Sub procedures of the SGNT algorithm 

Sub procedure Specification 
copy{nj,ei/wwin) Create nj, copy attributes of ei/wWin as weights Wj in rij. 
distance(ei,Wj) Compute d(e.i,Wj). 
choose(ei,ni) Decide nWin for e,. 
leaf(nwin) Check nWin whether nWin is leaf or not. 
connect(nj ,nWin) Connect nj as child neuron of nWin. 
update(ei,Wj) Update Wj of nj. 
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1,2,... ,p) of the neuron rij is updated as follows: 

Wjk = Wjk + ——7 ■ (e,fe - uijk). (4) 
Cj •+- i 

After all training data are inserted into the SGNT as leaf neurons, the weights 
of each node neuron rij is the averages of the corresponding weights of all its 
children. The whole network of the SGNT reflects the given feature space by it's 
topology. 

In the SGNT, the input data x, corresponds to ej, and the desired output x/i 
corresponds to the network output o* which is stored in one of the leaf neuron, 
for (Xi,yi) € D. 

In the testing process, the input data X\ is entered the root neuron of the 
SGNT as e,. Then the input data are reached one of the winner leaf neuron nWin 

of the SGNT through competition, and the desired output y, is compared with 
the network output oWin in order to evaluate the accuracy of the SGNT. , for 
(xi, j/i) G T. Note that though the competitive learning of the training process is 
performed among a parent and it's children recursively, the competitive learning 
of the testing process is performed among only children recursively. 

4    Ensemble Averaging 

SGNNs have some abilities as follows: 

— fast learning, 
— learning stability, 
— good mapping of given input data in the tree structure. 

However, because of SGNT algorithm is originally based on an unsupervised 
learning method, the accuracy of the classification/prediction is not so good as 
feed-forward neural networks which are implemented as a supervised learning 
method like BP. 

In order to acquire more higher generalization ability, we adopt ensemble 
averaging method [11] to SGNNs. The ensemble averaging method is based on 
statistic theory. This method proofed as following theories in [12]: 

1. The bias of the ensemble averaged output, pertaining to the ensemble, is 
exactly the same as that of the output pertaining to a single neural network. 

2. The variance of the ensemble averaged output is less than that of all single 
neural network. 

Here, the bias and the variance are decomposition components of MSE as fol- 
lows [13]: 

MSE = B + V; (5) 

B = (ED[f(x)}-E[y\x})2, (6) 

V = ED[f(x)-ED[f(x)]% (7) 
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Fig. 3. Structure of the ensemble system (testing process) 

where E is the expectation value on statistical sense , B is the bias decomposition 
of MSE, and V is the variance decomposition of MSE. These theories means that 
the overall error produced by an ensemble model are improved by averaging the 
output of all single network in the ensemble model. 

Next, We describe how to make the ensemble SGNNs model. This model can 
separate a training process and a testing process. In the training process, we 
define "shuffler" to shuffle the set of input data D. Fig. 2 shows the structure 
of the ensemble system including K SGNTs on a training process. The set of 
all input training data D enters each SGNN through each shuffler. The shuffler 
makes shuffle elements of D at random. All SGNTs are generated by adopting 
the SGNT algorithm. After the training process, various SGNTs are generated 
independently. 

In the testing process, the set of test data T is entered this ensemble model. 
Fig. 3 shows the structure of the ensemble system including K SGNTs on the 
testing process. Each output vector Ok G 5RM denotes the output of the expert 
k for the set of test data T. Here, M denotes the number of test data. The 
output of this ensemble model is computed by averaging the each expert output 
as follows: 

-     K 

O = 
K 

2^ok. (8) 
fc=i 
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In this paper, we adopt the ensemble model to three binary classification 
problems and the time series prediction. Considering the classification problems, 
in order to classify each test data, corresponding output Oj(i = 1,...,M) is 
evaluated as follows: 

Oj > 0.5 : Classl, 

Oi < 0.5 : ClassO. 

5    Parallelization of ESGNNs 

Because of each expert of ESGNNs can train and test independently, the ES- 
GNNs model has a possibility of the parallel computation at the training process 
and the testing process. Hence, we allocate each of experts to each of proces- 
sors on the MIMD computer. The procedure of the parallelization of ESGNNs 
is presented as follows: 

Stepl: In a master processor, read the training set D and the test set T in the 
disk. 

Step2: In the master processor, broadcast D and T for all K—1 slave processors. 
Step3: In all processors, generate the SGNT from D, then test the SGNT using 

T, and compute the Ok independently. 
Step4: In all processors, each output Ok for T is collected in the master proces- 

sor by all to one communication. 
Step5: In the master processor, compute o by Eq. (8) and write to the disk. 

Because of the number of the communications between the master processor 
and each slave processor is only two times (Step2 and Step4), the parallel effi- 
ciency is approximately expected the linear speedup. (See Fig. 4) In our case, all 
computations are performed on the Intel Paragon (Paragon XP/S15). This is a 
distributed memory multicomputer, and the architecture is multiple instruction 
multiple data (MIMD). The Paragon we use has 296 processors. Each processor 
is Intel i860XP (50MHz). The network topology of the Paragon is adopted the 
two-dimensional mesh. 

Parallel process 

Time 

Fig. 4. Parallelization of ESGNNs 
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6    Experimental Details 

We allocate a SGNT to each of processors on the Paragon, and compute 100 
trials for each single/ensemble model. The number of processors (SGNTs) K 
for the ensemble averaging is changed from 1 to 30 (1,2,3,4,5,6,7,8,9,10,15,20,25, 
and 30), and the threshold value £ is 0 for each SGNT algorithm. Because of 
the redundancy reduction, we repeated 100 trials from Step3 to Step5 in prior 
section continuously. Generally, the parallel efficiency e is defined as follows: 

,= 2ffi, <•> 
where S(K) stands for the speedup, and K is the number of processors. In this 
paper, we adopt the scaled speedup which is given in [14] to evaluate the parallel 
efficiency as follows: 

S(K) = Ps + PPK , (10) 

where Ps and Pp represent the fraction of the program which is performed in 
serial and parallel, respectively. 

In order to investigate the parallel performance of ESGNNs, we apply to three 
classification problems (MONK's [7]) and the time series prediction (Mackey- 
Glass time series [8]). Next, we describe the brief explanation of these problems. 

6.1    Classification Problems 

MONK's problems [7] are widely used as the benchmark problems. The learning 
task of the MONK's problems is a binary classification task. Table 2 shows six 
discrete attributes of MONK's problems. Each of them is given by the following 
logical description of a class. 

- Problem M\\ (head-shape = body .shape) or (jacket-color = red). From 432 
possible examples, 124 were randomly selected for the training set. No noise 
was present. 

- Problem M?- Exactly two of the six attributes have their first value. From 
432 examples, 169 were selected randomly. No noise was present. 

Table 2. Six abilities of the MONK's problems 

x\\ head-shape 6 round,square,octagon; 
X2'- body-shape £ round,square,octagon; 
X3: is-smiling € yes, no; 
X4: holding € sword,balloon,flag; 
X5: jacket_color € red,yellow,green,blue; 
xe- has-tie 6 yes,no; 
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Fig. 5. Mackey-Glass time series from x(0) to x(500) 

- Problem M3: (Jacket-color is green and holding a sword) or (jacket-color 
is not blue and body-shape is no octagon). From 432 examples, 122 were 
selected randomly. And among them there were 5% misclassification, i.e. 
noise in the training set. 

6.2    Time Series Prediction 

We generate chaotic time series from the differential equation of Mackey-Glass [8] 
which is used by many researchers as follows: 

dt w       l+x{t- \io (11) 

with a = 0.2, b = 0.1, x(0) = 0.0, and r = 17. The input time-lagged vector 
Xi is (xt,Xt-m,xt-2m,Xt-3m), and the desired output y* is xt+L- In this paper, 
m is 6 and L is 85. The training data set is used from t=0 to t=500 (Fig 5). 
Table 3 shows the relation between the input data a;, and the desired output in 
on training data set. The data from t=10000 to t=20000 are used for testing. 

Table 3. Relation between the input data cc» and the output data in on training data 
set 

Vi 

482 
483 

(£18, £12, xe,xo) 

(xi9,Xi3,X7,Xi) 

(X20,Xu,Xg,X2) 

(Z499, 2493, X487,ai48l) 

(g500, £494,0:488, 3:482)) 

2:103 

2:i04 

2:105 

3:584 

2:585) 

113- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

7    Experimental Results 

Fig. 6, Fig. 7, and Fig. 8 show the influence of the number of processors on 
misclassification rate (%) for MONK's problems Mi, M2, and M3 respectively. 
Misclassification rates are improved by computing the ensemble averaging of 
various SGNTs for all problems. On an average, these misclassification rates 
are improved respective 5.7%, 1.8%, and 4.1% in the case of the K is 10, and 
respective 6.7%, 2.1%, 4.4% in the case of the K is 30, for Mi, M2 and M3. 
The performance of the improving classification accuracy is saturated over 20 
processors for all problems. 

In the time series prediction, the influence of the number of processors on 
ARV for the Mackey-Glass time series is shown in Fig. 9. The result shows 
that the more the number of processors increases, the more ARV is improved. 
The improving efficiency is gradually saturated by increasing the number of 
processors same as classification problems. 

The results of the bias/variance decomposition of MSE show some interesting 
associations between ARV and the number of processors. In order to illustrate 
that the tendency of the improvement of ARV, we compute the bias (B) and 
the variance (V) decomposition of MSE which are given by Eq.(6), Eq.(7) re- 
spectively for all cases (Fig. 10). We use the results of all 100 trials which are 
obtained from the same training data set D for evaluate B and V. Fig. 10 shows 
that though B is continue at the same level, V decreases. Hence, MSE and ARV 
decrease same tendency of V, and approximate B gradually in the case of the 
number of processors increases. Hence, the improvement of ARV is gradually sat- 
urated. It seems that the effect of the improvement of misclassification rate for 
classification problems is saturated for the same explanation as we have shown 
above. 

Fig. 11 shows a part of prediction results between #15103 and X152032 as an 
example of the relation between real time series and its predictions in the case of 
K is 1, 10, 30 respectively. Using the ensemble averaging of various SGNNs, the 
prediction output /(a;,) is approximated to the real Mackey-Glass time series y* 
in almost cases. 

Table 4 shows the computation time (CT, in sec.) and the speedup (S(K)) for 
classification problems (Mi, M2, M3), and time series prediction of the Mackey- 
Glass time series (MG). Here, the computation time is the total processing time 
of 100 trials. The results show that the parallel efficiency is approximately ob- 
tained the liner speedup for all problems, and the results of the time series 
prediction is a better speedup than three classification problems. 

It is concluded that our method could improve the generalization capability 
by allocating each of SGNTs to each of processors, go on maintaining the high 
speed processing property of the single SGNN. 

2 They are taken in the time interval between t — 15000 and t = 15118 as input test 
data. 
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Table 4. Computation time (CT), and speedup S(K) as a function of the number of 
processors K for Mi, Mi, Mz and the Mackey-Glass time series (MG) 

M l M2 M3 MG 
K CT (sec. )S(K) CT (sec. )S(K) CT (sec. )S(K) CT (sec.) S(K) 
1 13.08 1.00 15.66 1.00 13.46 1.00 256.43 1.00 
2 13.44 1.92 16.09 1.89 14.33 1.92 262.26 1.87 
3 13.69 2.81 16.36 2.74 14.89 2.80 266.85 2.72 
4 13.85 3.68 16.53 3.58 15.41 3.66 262.82 3.61 
5 13.96 4.55 16.76 4.41 14.44 4.52 264.01 4.47 
6 14.05 5.40 16.80 5.23 14.56 5.36 263.48 5.36 
7 14.10 6.24 16.86 6.04 14.61 6.20 263.87 6.23 
8 14.18 7.13 16.90 6.87 14.75 7.02 263.86 7.09 
9 14.31 7.91 17.03 7.58 14.83 7.82 265.54 7.91 
10 14.38 8.72 17.10 8.41 14.91 8.63 265.12 8.79 
15 14.58 12.82 17.34 12.35 15.10 12.67 266.64 13.07 
20 14.70 16.87 17.54 16.23 15.22 16.71 267.38 17.32 
25 14.88 20.84 17.56 20.12 15.29 20.69 268.18 21.54 
30 14.93 24.97 17.61 24.02 15.34 24.84 268.65 25.80 

8    Conclusions 

In this paper, we presented the parallel performance of ESGNNs for classification 
problems and time series prediction on the MIMD parallel computer. From the 
experimental results the following conclusions can be drawn: 

- The improvement of the classification/prediction accuracy is expected by 
using various SGNTs which are allocated processors on the MIMD computer. 

- The parallel efficiency is approximately obtained linear speedup for all prob- 
lems. 
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Abstract: The paper describes the Orespics system, a tool defined to learn the basic 
concepts of concurrency. Orespics defines an imperative language by putting together 
the primitives of the Logo language turtles and a set of concurrent constructs. We 
show that the system may be employed to plan didactic trainings in order to teach the 
basic concepts of concurrent programming: in particular we show a course to learn 
the semantics of different types of communication primitives. 

1     Introduction 

Recently, the educational challenge of teaching parallel programming has acquired 
great importance: our teaching experience shows that students find several difficulties 
in understanding and learning the concurrent paradigm even if the world where we live 
and work is naturally concurrent. 

We think that this situation is due to the way in which the concurrent paradigm is 
usually presented in our high education courses, where students have their first 
experience in concurrency through the programming of operating systems or of 
complex scientific applications. 

We believe that this experience should be acquired at an earlier age, through 
simpler and friendlier programming environments. Our idea is to define an 
environment where the students may create micro-worlds, i.e. virtual worlds populated 
by creatures interacting through the exchange of messages. 

We have chosen the paradigm of message exchange because we believe that it 
simulates naturally the anthropoids communication. Futhermore single system 
including both the message passing paradigm and the shared memory one is feasible 
but not suitable for didactic purposes. Some didactic principles establish that the 
learning is more valid if it follows a sequence of consolidated steps, where each step 
corresponds to the acquirement of a well defined concept. According to them, we avoid 
to mix the message passing paradigm with the shared one in a single didactic 
environment because this could introduce confusion in the learning process. 
Furthermore no standard definition of the shared memory paradigm has been given till 
now: the proposed models differ one another for the adopted consistency model [9]. 

The system we propose may be considered an agent one [16], where each agent is a 
process and is programmed through a language integrating the Logo [6] turtles 
movement primitives in an imperative concurrent language: the students may analyse 
the interactions of processes through an inspection of the evolution of the virtual 
creatures on the screen. 
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As our fundamental choice, the language we have defined is very close to Pascal 
and the communication primitives are stripped out the versions of the MPI library [11] 
so the knowledge acquired through our system may be useful in the students' future 
life. On the other hand, as stated above, it is difficult to present, as a first approach, a 
professional language (C language) extended with MPI primitives because the students 
get bored because of the technical details without significant conceptual added value. 

The most important didactic characteristic of our system is the identification 
between the agent and the character of the virtual world: this introduces a natural 
transformation from an abstract concurrent problem (e.g. multiple readers - single 
writer problem) into a "concrete" situation (the example of the ants and the com in the 
section 5 Experiment). The system visualises the evolution of the concurrent processes 
through the evolution of the world: this kind of visualisation is deeply different from 
that of the classical debuggers for parallel programs [7, 10]. 

The theory underlying our proposals is the constructionism of Papert [12]. 
According to this paradigm, learning is an active process: the students build their 
mental infrastructures through a free exploration of the world. 

The first embryonic version of our system, presented in [5], is evolved in [2, 3, 4]; 
the last version of the system is presented in this paper. The primitives introduced in 
the different versions of the system, has enabled the definition of different didactic 
trainings characterised by increasing levels of difficulties whose aim is to propose the 
resolution of more and more sophisticated concurrency problems. 

In particular, the didactic training we describe in this paper shows how the same 
problem may be programmed through a sequence of solutions characterised by an 
increasing degree of agents' autonomy: the increase of autonomy corresponds to the 
use of communication primitives with higher degrees of non determinism; furthermore, 
the students learn a decentralised way of thinking by exploiting the functionality of the 
system. 

The paper is organised as follows: firstly we present an analysis of some of the 
existing animate systems based on concurrent paradigms, then we introduce our new 
system, Advanced Orespics, and its Orespics-PL language; finally we propose an 
example of didactic training to teach how non-determinism increases autonomy. 

2     Related work 

Any programming environment designed to support the building of an animate system 
should offer some basic world-modelling capabilities and present them in an easy and 
accessible form. It must support the simultaneous animation of multiple objects. It must 
support object autonomy: i.e. objects should operate under their own control and must 
be able to sense the surrounding environment as well as interact with other animate 
objects. 

Several interesting proposals of animate system are known today. 
StageCast (en evolution of the KidSim system [15]) is a simulation system of 

micro-worlds developed by Apple's Advanced Technology Group. Students who use 
this instrument may create the characters of a micro-world and program their behaviour 
through a set of rules. Each object of the micro-world is identified by three properties: 
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• the appearance, that describes how the objects appear on video in a particular 
context, 

• the rules, which define its behaviour in a particular context, 
• the property, that allows to store a particular event. 

A student that uses StageCast creates the prototypes of the characters, inserts 
several copies of each of them in the micro-world, and activates the simulation of the 
world. At every tick (that represents the tick of the StageCast clock) each object of the 
world examines its context and decides the new state by looking for its set of rules. The 
creation of rules is made by demonstration, defining the relationships existing between 
two graphic contexts: by using the mouse, a student arranges the objects of the world 
defining the initial context of application of the rules {before context) and then he/she 
modifies their disposition in the after context. The execution of the world is a change in 
the disposition of objects. 

When the simulation is active, all the objects on the screen move in parallel. This is 
a simulated concurrency. The system applies the rules of transition following the order 
of insertion of the characters in the world. It applies the rule of transition to the first 
object of the world and evaluates the second one in the context eventually modified by 
the application of the rules in sequence, starting from the first one. 

StarLogo [14] is a programming environment to explore the behaviour of 
decentralised systems developed at M.I.T.. Through this system, a student may 
program and control, in parallel, hundreds of turtles through a Logo-like programming 
language. The world of the turtles is alive: it is composed by hundreds of patches that 
may be considered like turtles that are programmable but without movement. Turtles 
move in parallel and use the patch to exchange messages. No mutual exclusion is 
guaranteed on the patch and no explicit use of concurrent constructs is needed to 
exchange messages. 

ToonTalk [17] is a concurrent object oriented programming language based upon 
the concurrent constraint programming paradigm and is based on an animated syntax 
and programming environment. The concurrency and the message exchange paradigm 
are limited and the target of the system is limited to children. 

All these systems do not allow a clear and/or complete definition of communication 
among concurrent entities. 

The Orespics system, developed at the Computer Science Department of the 
University of Pisa [1, 5] is programmable with Logo-PL language, a local environment 
language in which students guide the action of at most 8 virtual agents. 

Logo-PL has control flow, movement and communication commands and 
expressions. The Logo-PL language defines a set of communication primitives. In 
particular, the prototype version implements basic primitives to send and receive 
messages. The receive primitive is synchronous and asymmetric while the send 
primitive is synchronous and symmetric [8]. The introduction of these primitives 
allows students to subordinate the actions of certain creatures to the action of others. As 
clearly shown, in this prototype, the set of the communication primitives is extremely 
poor. 
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3    The Advanced Orespics system 

Advanced Orespics is a project we are developing as further improvement of the 
Orespics system described above. Its programming language is called Orespics-PL and 
is based on the local environment model and on the explicit use of the communication 
primitives. The Advanced Orespics system has substituted the previous one because a 
richer set of communication primitives is defined, activation and termination constructs 
are introduced and no limit to the number of interacting actors in the world is imposed. 
Each actor is an agent of an animate system and has the attributes of autonomy, 
purposefulness and the ability to react to the surrounding environment by the exchange 
messages paradigm. An agent is characterised by a set of properties: the initial position 
on the screen, its appearance and the code of its program. 

The system gives the users an interface to define all these properties. The system 
has a set of pre-defined fantastic and real characters like aliens and animals. The 
students may choose the most suitable character according to the situation to solve. 

The sequential part of Orespics-PL includes traditional imperative sequential 
constructs (repeat, while, if ...) and all turtle primitives of the Logo language [6]. 
Orespics-PL language offers all the elementary data types (integer, boolean..): the only 
data structure is the list. Some of the operations defined on list type are getFirst(list), 
first(list) and second(list): getFirst returns the first item of list and pops it up; first and 
second return respectively the first and the second ones and do not pop them up. 

The set of primitives, functions and procedures used in the following examples are: 
• versus(x, y), which returns the direction to assume to reach the point of co- 

ordinates x and v, 
• distance(x, y), which returns the distance between the position of agent and the 

point (x, y), 
• set_heading(angle), which turns the agent in the direction given by the angle, 
• jump(x, y), the agent jumps to the point of co-ordinates (x, y), 
• show(s), the agent shows on the screen the string s, 
• random(val), which returns a random value included in +/- val. If parameter is 

zero, it returns a random value according to the common definition. 
As regards the concurrent part, the new language defines the following types of 

primitives: 
termination and activation, 
synchronous and asynchronous send and receive, 
broadcast/multicast send, 
asymmetric receive, 
a command to activate a population of agents. 

We present, in the following, the syntax and semantics of these constructs. 
The behaviour of an agent is specified between the keyword Agent and end where 

the word that follows Agent is its name. 
We now describe all the communication primitives of the language. As far as 

semantics is concerned, that the communication partner is active or it has finished the 
program execution or it is not ready to accept/receive the message is irrelevant. 
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The syntax of the synchronous symmetric primitives is: 

send&wait msgto agent 
wait&reccivevariromagent 

The semantics of synchronous and asynchronous primitives is well known in 
literature [8]. With regards to the synchronous primitives, when an agent sends a 
message to another one and its partner is not ready for communication or is not active, 
it waits until the message has been received. The semantics of synchronous receive 
primitive is analogous. The use of these primitives is shown in the following example. 

Example 1 
Consider the following problem: 

"An agent wants to sleep for a time slice, after which it want to be woken up by an 
alarm clock" 

This micro-world may be programmed defining two agents. The first one sends the 
other one the amount of time it wants to spend sleeping and waits till the other one 
wakes it up. The second agent receives the message and simulates an alarm clock. 
It is worth noticing that the behaviour of the sleepy agent may be easily simulated 
exploiting a synchronous receive primitive to make it wait for the alarm. 

Agent Clock 
receive&wait timeSlice from Sleepy; 
tick-«-0; 
repeat  tick •+- tick + 1; 
until (tick = timeSlice) 
send&wait timeSlice to Sleepy 

end 

Agent Sleepy 
send&wait timeSlice to Clock; 
receive&wait timeSlice from Clock; 
show "Get up!"; 

end 

The syntax of the asynchronous p"dmitives is: 

receive&no_waitwrfrom<zgewr 
send&no_waitw5gto agent 

As for the asynchronous primitives, an agent sends/receives a message to/from 
another one, but it does not wait for the successful issue of the communication. When 
an agent executes a send&nojwait, it does not wait for the receiver to get the message 
and it goes on with its execution. If the receiver is not ready to accept it or it is not 
active, the message is inserted in a queue where messages are inserted and taken 
according to the order of arrival. We suppose that messages sent by one agent to 
another one are received in the same order as they are sent. When an agent executes a 
receive&no_wait, it checks the existence of some incoming messages and goes on. If 
the queue is empty, the message has no meaning, and no value is assigned to the var. 
The meaning of var may be checked through the function in_message() which returns a 
true value if the last executed receive&no_wait has picked up a valid message, and a 
false value otherwise. 
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A process executing the receive&no_wait performs a non-deterministic choice: we 
suggest that a suitable introduction of non-determinism in concurrent programs should 
be given when this primitive is introduced to the students. 

We have defined synchronous and asynchronous broadcast/multicast send. The 
syntax of the synchronous broadcast send is: 

sendAll&wait#z5g 

The syntax of the synchronous multicast send is: 

sendAll&waitrasgto listjzgents 

In the first case an agent sends a message to all agents while in the second case it 
sends a message only to the subset of agents defined in list_agentsm both cases it waits 
for the successful issue of all the communications. Its execution is suspended until all 
the receivers get the message. 

We also define asynchronous broadcast and multicast primitives: as regards the 
syntax, it is sufficient to substitute the word wait with no_wait and the semantics is 
analogous to the symmetric case. 

The language includes synchronous and asynchronous asymmetric receive. The 
syntax of the synchronous asymmetric receive is: 

receiveAny& waitnsgiromlistjzgents 
receiveAny& waifewsg 

In the first case an agent receives a message from any of the active agents in 
list_agents, while, in the second case, it receives a message from any active ones, and 
in both cases, it waits until one message has been received. If more than one message 
arrives, its selection is non-deterministic. 

In a system allowing the simulation of micro-worlds, a command to specify several 
agents with the same behaviour is useful. To create a population of agents with the 
same behaviour each agent's code has to be included between the keywords 
GenericAgent and end. 

The syntax of the construct is 

newAgent(i..Af) agentName 

The system generates the codes of N agents, which are called agentNamel, 
agentName2 , agentNameN. 

The usage of broadcast send, asymmetric receive and new Agent command are 
shown in the following example. 

Example 2 
"The coach of the Chicago Bulls has to select the pivot man from a set of 
basket ball players." 
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Agent Coach 
receiveAny&wait max; 
for(i-«-l to 4) 

receiveAny&wait height; 
if (max < height) 

max ^height; 
endif 

endfor 
sendAll&no_wait max; 

end 

GenericAgent BasketBall_Player 
send&no_wait my_height to Coach; 
receive&wait max from Coach; 
if (max = my_height) 

forward 10; 
endif 

end 

The Coach agent receives the height of each player, computes the maximum one 
and tells it to all players. The one having that height moves forward. 

In this example we use new Agent construct to create the players of the team as 
follows: 
newAgentfl ..5) BasketBall_Player 

This construct creates 5 players: BasketBall_Playerl,...., BasketBall_Player5. ^ 

4     A didactic training to learn the communication semantics 

This section shows how a didactic training to teach communication semantics may 
be planned. We introduce an example of didactic training, whose goal is to allow the 
students to learn the semantics of different communication primitives and to let them 
understand how the use of non-deterministic primitives increases the autonomy of the 
agents. 

According to the constructionist approach, this is obtained by proposing a set of 
proper problems to the students and letting them solve these problems in the way they 
prefer. The whole process is obviously guided by the teacher; nevertheless the student 
may try different solutions and verify the effects of his/her program directly on the 
screen in case s/he changes the program. 

We shall show only the code of the agents used to solve the proposed problems: we 
suppose they have just been created and that each of them has been properly defined. 

The didactic training proposes a sequence of examples where the agents are 
characterised by an increasing degree of autonomy: this implies the use of the non- 
deterministic primitives. 

We propose the following situation: 
"In afield there are two ants called Z ant and T ant. They are searching 

for food and make an agreement: the first who finds it notifies the other 
one with the position of the food. "Good luck T". "Good luck Z. Let us 
begin" 

First, we propose the students to solve the problem by using only deterministic send 
and receive commands. In this case, the solution will be characterised by a strict 
synchronisation between the agents implementing the two ants: for instance, Z and Q 
ants may exchange, at each step, a message notifying other if it has found the food or 
not. If the agent has found it, it sends its co-ordinate to the other and stops moving. All 
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send primitives we use in this version are asynchronous to avoid the deadlock, and the 
receive ones are synchronous. 

Agent Z_ant Agent T_ant 
x •*- randomO; x ■+- randomO; 
y ■*- random(); y ■*- randomO; 
jumpfx, y); jump(x, y); 
LfounckH false; Lfound*- false; 
You_found'<- false; You_found'4-false; 
repeat repeat 

X'4-random(25); x •*- random(25); 
y*-random(15); y<- random(l 5); 
right x; right x; 
forward y; forward y; 
if here_food(myX, myY) if here_food(myX, myY) 
then then 

send&no_wait "Found" to T_ant; send&no_wait "Found" to Z_ant; 
send&no_wait [myX, myY] to send&no_wait [myX, myY] to 
T_ant; Z_ant; 
l_found'*-true; Lfound*- true; 

else else 
send&no_wait "Not Found" from send&no_wait "Not Found" from 
T_ant; Z_ant; 

endif endif 
receive&wait [x] from T_ant; receive&wait [x] from Z_ant; 
if(x = "Found") if (x = "Found") 

receive&wait [x, y] from T_ant; receive&wait [x, y] from Z_ant; 
You_found^-true You_found ^-true; 

endif endif 
until (Lfound OR You_found); until (Lfound OR You_found); 
if You_found ifYou_found 
then then 

set_heading (versusfx, y)); set_heading (versus(x, y)); 
forward distance(x, y); forward distance((x, y)); 

endif endif 
end end 

In the second version, described here below, we propose students to employ non- 
deterministic primitives to increase the autonomy of each agent: each agent does not 
know the behaviour of the other one, in particular it does not know if and when the 
other one is ready to communicate. 

In this case, the agent has to use a communication primitive which allows to check 
if a message is incoming from the environment without stopping its execution: this is 
obtained through receive&no_wait. 
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Agent Z_ant 
LfouncH-false; 
You_found4- false; 
x-4- random(); 
>■•*- random(); 
jump(x, y); 
repeat 

x*- random(25); 
y*-random(15); 
right x; 
forward y; 
if here_food(myX, my Y) 
then 

send&no_wait [myX, myY] 
to T_ant; 
I_found<-true; 

else 
receive&no_wait [x, y] from 
T_ant; 
if in_message() 
then 

You_found-*- trae; 
endif 

endif 
until (Lfound OR You_found); 
if You_found 
then 

set_heading (versus(x, y)); 
forward distance((x, y)); 

endif 
end 

Agent T_ant 
Lfound*- false; 
You_found*- false; 
x-4- random(); 
y4- randomO; 
jump(x, y); 
repeat 

x*- random(25); 
y*- random(15); 
right x; 
forward y; 
if here_food(myX, myY) 
then 

send&no_wait [myX, myY] 
to Z_ant; 
LfouncH-true; 

else 
receive&no_wait [x, y] from 
Z_ant; 
if in_message() 
then 

You_found*- true; 
endif 

endif 
until (Lfound OR You_found); 
if You_found 
then 

set_heading (versus(x, y)); 
forward (distance(x, y)); 

endif; 
end 

Each ant moves randomly, checking for the presence of the food. If an ant finds it, 
it sends the other one the food co-ordinates and stops moving. If it does not find it, it 
checks the presence of an incoming message from the other ant. If no message is 
present it goes on moving, otherwise it receives the message and reaches the food. The 
evolution of the program is shown in fig. 1. 

It is important to stress that in this case the agents are completely autonomous. Each 
one may be programmed without knowing the behaviour of the other agent: this is the 
main difference between this example and the previous ones. The increase of autonomy 
is obtained through the use of the receive&no_wait primitive that allows each agent to 
perform a non-deterministic choice whose result depends on its interaction with the 
surrounding world. 

Finally, we propose a generalisation of the previous problems. A population of ants 
is involved and more food sources are present. 

Each ant moves randomly on the screen, and if it finds the food, it lets all the other 
ones know. Otherwise, it checks if any ant has found the food: since more than one 
source of food is present, each ant may receive more than one notification from the 
other ones. In this case it reaches the nearest source of food. 

-v 
* :*f 

*- 

* 
Fig. 1 Evolution of the movement 
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GenericAgent Ant repeat 
best_distance-4- MaxDistance; receiveAny&no_wait msg; 
best_x-4-MaxX; if in_message () 
best_y«-MaxY then 
l_foun(M- false; YouJbund-4-true; 
YouJbund-*-false; If (distanced, y) < 
x ♦- randomO; distance(best_x, best_y)) 
y *- randomO; best_x -4- x; 
jump(x,y); best_y<-y; 
repeat endif 

angle'*-random(25); endif 
far*-randomO 5); until(in_message()) 
right angle; endif 
forward far; until (I_found OR You_found); 
if here_food(myX, myY) if You_found 
then then 

sendAll&no_wait [myX, my Y]; setjieading (versus(best_x, best_y)); 
I_found*-true; forward distance(best_x, best_y); 

else endif 
end 

The behaviour of each ant is similar to that of the previous examples: if an ant finds 
the food it exploits a broadcast send (sendAll&no_wait) to inform all others. The send 
is asynchronous because no strict synchronisation is required. If an ant does not find 
the food, it checks, through the function in_message(), for the presence of any 
incoming messages: it is worth noticing that the agent exploits the receiveAny&no_wait 
because it does not know in advance which ant has found the food. A further level of 
non-determinism is present since the ant does not know who has sent the message. All 
incoming messages are picked up and the message containing the nearest co-ordinates 
is selected while others are discarded: the ant then reaches the point corresponding to 
the selected message. 

With the command 

new Agent (1..5) Ant 

we create several ants with the same behaviour which move randomly on the screen 
and search for the food. The newAgentcommand, according to its semantics, generates 
the code of five ants, Antl,..., Ant5. The use of broadcast send and asymmetric receive 
makes each ant independent from the other: its behaviour is not bound to a particular 
ant. 

The following figure shows what happens in the case that two ants find the food at 
the same time. 
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Fig. 2 Population of ants: evolution of the movement 

5     Experiment 

The last version of the Orespics system [13], has been employed to carry out a 
preliminary experiment. The target of it has been a fifteen years old student, called 
Massimiliano, who is currently studying Pascal and with some experience with Logo. 
We are happy to show the positive result of this experiment. 

Massimiliano has rapidly learnt the basic features of the system and, when required 
to define a micro-world, he has proposed a famous game in Italy "Worms II". Since 
this problem offers a low degree of parallelism, we have proposed him an alternative 
one, a deterministic version of the classical "multiple readers/single writer" problem, 
which we have proposed in the following way: 

"A tractor brings some corn into a basket where some ants are eating. To avoid 
ants' death, the tractor can not unload the corn when the ants are eating. The ants eat 
all the corn in the basket before to leave it and the tractor fills it completely with the 
corn ". 

Massimiliano has immediately defined the agents of this micro-world: the most 
surprising issue was the introduction of an animated basket. In the concurrency 
framework, this corresponds to a manager for the shared resource, i.e. the corn. The 
animated basket co-ordinates the activities of the ants and of the tractor by alternating 
their accesses to the basket. 

The kind of the messages employed show the age of the boy: for instance, the 
tractor sends to the basket the message "levatemele di torno "{"get rid of the ants ") to 
drive out the ants, each ant sends the message "ehepaura!"("l am afraid!") as soon as 
it has gone out of the basket. 

We have noticed that the boy has always preferred the synchronous communication 
primitives to the asynchronous ones because "In this case it's the same". 

Finally, the only relevant error of the program is a typical "time dependent" bug: 
the student has exploited a "wait 15" instruction in the agent "basket" to define the time 
the tractor needs to unload the corn. This does not guarantee the mutual exclusion of 
the accesses to the basket. We have shown him that it is guaranteed only if the end of 
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the unload operation is notified from the tractor agent to the basket one through an 
explicit message. 

Fig.3 shows some snapshots of the micro-world. 

Fig. 3 Snapshots of the microworld 

6      Conclusions 

We may create lots of new examples in which the agents co-ordinate and 
synchronise themselves. Classic problems like the game of life, the simulation of a 
biological system, and so on may be naturally realised in our system. 

We have studied the possibility of creating several typologies of agents 
characterised by a richer set of personal properties, for example, in the case of the ants 
we give them the ability to move the antennae or in the case of the dog the ability to 
bark. We are implementing a version in which the character may be created or 
imported by the student. 
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Abstract. Methodologies derived from Genetic Programming (GP) and 
Knowledge Discovery in Databases (KDD) were used in the parallel im- 
plementation of the indexer simulator to emulate the current World Wide 
Web (WWW) search engine indexers. This indexer followed the index- 
ing strategies that were employed by AltaVista and Inktomi that index 
each word in each Web document. The insights gained from the initial 
implementation of this simulator have resulted in the initial phase of the 
adaption of a biological model. The biological model will offer a basis for 
future developments associated with an integrated Pseudo-Search En- 
gine. The basic characteristics exhibited by the model will be translated 
so as to develop a model of an integrated search engine using GP. The 
evolutionary processes exhibited by this biological model will not only 
provide mechanisms for the storage, processing, and retrieval of valuable 
information but also for Web crawlers, as well as for an advanced com- 
munication system. The current Pseudo-Search Engine Indexer, capable 
of organizing limited subsets of Web documents, provides a foundation 
for the first simulator of this model. Adaptation of the model for the 
refinement of the Pseudo-Search Engine establishes order in the inherent 
interactions between the indexer, crawler and browser mechanisms by in- 
cluding the social (hierarchical) structure and simulated behavior of this 
complex system. The simulation of behavior will engender mechanisms 
that are controlled and coordinated in their various levels of complexity. 
This unique model will also provide a foundation for an evolutionary ex- 
pansion of the search engine as WWW documents continue to grow. The 
simulator results were generated using Message Passing Interface (MPI) 
on a network of SUN workstations and an IBM SP2 computer system. 

1    Introduction 

The addition of new and improved genetic programming methodologies [14],[36] 
will enable the preliminary Pseudo-Indexer model [33] to generate a population 
of solutions [6],[22] that provide some order to the diverse set of Web pages 
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comprising the current and future training sets. The applicability of genetic pro- 
gramming to this task results from the existence of an adequate population size 
in relation to the difficulty in organizing the diverse set of Web pages [30],[34]. 

Studies of parallel implementations of the genetic programming method- 
ology [6],[15],[18],[25] indicated that population evaluation is the most time- 
consuming associated process. Population evaluations for the Pseudo-Search En- 
gine's Indexer will result from calculating the fitness measures associated with 
each Web page after one of the following: 1) parsing the training set, 2) addi- 
tions to the training set, or 3) the execution of one or more of the GP operators. 
The cost associated with the fitness computations [18] offsets the cost associated 
with the load balancing and communication overheads. The previous GP studies 
have resulted in dynamic load-balancing schemes which can be used to monitor 
the irregularity in processor work loads, a result of parsing variable size Web 
pages. A major shortcoming of GP applications [6] is the amount of execution 
time required to achieve a suitable solution. 

2    Chromosome Modeling using Genetic Methodologies 

2.1    Genetic Methodologies 

Genetic programming is an evolutionary methodology [36] that extends the tech- 
niques associated with Genetic Algorithms (GAs) [4]. The evolutionary force of 
these methodologies reflects the fitness of the population. The basis of GAs re- 
sults from designing an artificial chromosome of a fixed size that maps the points 
in the problem search space to instances of the artificial chromosome. The ar- 
tificial chromosome is derived by assigning variables of the problem to specific 
locations (genes). The memes [1] denote the value of a particular gene variable. 
Genetic algorithms provide an efficient mechanism for multidimensional search 
spaces that may be highly complex and nonlinear. The components of a GP are: 

1. Terminal set. The terminal set consists of input variables or constants. 
2. Function set. The functional set varies, based on the GP application, by 

providing domain-specific functions that construct the potential solutions. 
3. Fitness measure(s). The fitness measure(s) provide numeric values for the 

individual components associated with the members of a population. 
4. Algorithm control parameters. The algorithm control parameters are depen- 

dent on population size and reproduction rates (crossover rate and mutation 
rate). 

5. Terminal criterion. The terminal criterion uses the fitness measures to de- 
termine the appropriateness of each solution based on an error tolerance or 
a limit on the number of allowable generations. 

The search space is defined by the terminal set, function set, and fitness mea- 
sures. The quality and speed of a GP application is controlled by the algorithm 
control parameters and terminal criterion. 

Genetic programming is composed of fitness evaluations [15],[18] that result 
from the application of genetic operators to individual members of a chosen 
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population (Web pages). The operators incorporated in this methodology are 
individual (or subgroup) migration, reproduction, crossover, and mutation. The 
use of a linear string of information can result from the direct modeling of DNA. 
The outcome from applying the genetic operations to this string of information 
corresponds to obtaining a globally optimum (or near-optimum) point in the 
original search space of the problem. 

The migration operator consists of a process to select individual(s) to delete 
from the population. The reproduction operator consists of a process to copy an 
individual into a new population. The crossover operator generates new offspring 
by swapping subtrees of the two parents. The mutation operator randomly se- 
lects a subtree of a chosen individual. This process then randomly selects a new 
subtree to replace the selected subtree. The application of the mutation opera- 
tor reduces the possibility of achieving a solution that represents a local optima. 
The selection of individuals from the distinct subpopulations may follow several 
formats. A new methodology will be developed when applying these operators 
to subpopulations of Web pages. 
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Fig. 1. Distribution of Web pages. 

2.2    Modeling Chromosomes 

The Pseudo-Search Engine Indexers' hybrid chromosome structure in Figure 1 
follows the methodologies of GP and GAs. These structures represent subsets of 
Web pages (subpopulations) that reside at each node (Web site) in a distributed 
computer system. Each strand of genes that reside on each Nodei (Web site) is 
viewed as a set of the genetic components of an individual member of a simulated 
species. Each horizontal strand in the chromosome structure represents a Web 
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page that would translate into a meme. The bracket to the left of the Web pages 
implies that the pages have similar characteristics to those that comprise a gene 
(allele) and its memes. 

The components of the genes are referred to as the memes and the number 
of memes vary within each allele. The memes are the actual Web pages corre- 
sponding to primitive features that are contained at each Web site. New allele 
are formed by the addition of new Web pages at a given Web site. When new 
memes are added to enhance an alleles' current set of memes, each allele can 
grow in size, but its chromosome length remains fixed. The application of the 
GP crossover operator results in two new chromosomes, formulating from the 
transmission of components of the genetic makeup of the parents. The bracket 
mechanism provides a numerical order to the Web pages in this structure. This 
approach provides a mechanism to facilitate the evolution of diverse nodes. The 
use of a single population leads to panmictic selection [15] in which the indi- 
viduals selected to participate in a genetic operation can be from anywhere in 
the population. The method used to avoid local optima [22] involves subpopu- 
lations [24]. This model will be expanded by simulating double-stranded RNA 
genomes [10] as the population of indexed Web pages grows. 
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Fig. 2. Execution times for the workstations. 

3    The Biological Model 

The biological model for the Pseudo-Search Engine [32] is based on the social 
structure of honeybees [9],[29]. A mathematical model of the social structure of 
honeybees will be used to enhance the incorporation of GP methodologies [14] 
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since the bee colony represents a highly evolved biological system [17] which 
forms a basis to model the continuous expansion of Web pages. 

The genetic programming approach incorporates the following genetic op- 
erators: migration, reproduction, cross-over, and mutations. A similar group of 
evolutionary operators for honeybee colonies are: migration, swarming, and su- 
persedure (replacement of an existing, older queen by a younger queen follow- 
ing a fight). The evolutionary operators associated with the queen, drones, and 
worker bees are similar to the genetic programming operators. The cross-over 
operator is similar to the mating process for the queen bee, but differs since the 
parent chromosomes cease to exists in GP but only the queen persist in the evo- 
lutionary sense. The children chromosomes replace their corresponding parent 
chromosomes in standard GP. The migration operator in GP purges an existing 
subpopulation of the least desirable members (traits) and in some cases the best 
member (trait) [25]. This process was implemented in GP as an attempt to avoid 
local optimals. 

In a true evolutionary model individuals migrate from one subpopulation 
to another [7] for many diverse reasons such as crowding, changes in the en- 
vironmental conditions, limitations on colony activities, or members becoming 
disoriented. These external evolutionary factors benefit the gene pool by ensur- 
ing diversity. The mating ritual [9] for queen bees in colonies provides a built-in 
mechanism for incorporating a host of diverse genetic profiles into existing and/or 
new colonies. The drone bee mates once and dies - a process similar to a worker 
bee using its stringer and dying. 
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Fig. 3. Execution times for the IBM SP2. 
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4    Limitations of the Parallel Implementations 

4.1    Timing Results 

Message-passing studies [8],[26] have been conducted to determine the efficiency 
of parallel programs, implemented on shared as well as distributed memory com- 
puter systems. The implemented message-passing paradigm depended upon a 
client-server model [19] with n - 1 clients for a sub-cluster of n nodes as its 
basis. The message size used in all data transmissions was consistent and the 
data type contained an array of 101 characters. The sending and receiving mes- 
sage patterns for the n node cluster varied according to OS tasks and the tasks 
of other users on the nodes in the clusters. This study was not conducted in 
dedicated cluster environments. 

Walker [31] described the load-balancing model that led to the execution 
times in Figures 2 and 3. The execution results displayed reflect the diversity 
existing among the different types of computer hardware used in this study. 
These results also reflect quasi-dedicated computer environments associated with 
tightly coupled and loosely coupled parallel computer models. The workstation 
timing results show consistent increases in required CPU time as the training 
set size increases. The IBM SP2 results display spikes that reflect the impact 
of other users in a tightly coupled environment, as well as the nondeterministic 
execution of the load-balancing model. 

Number of Processors (Nodes) 

Fig. 4. Speedup for the workstations. 

4.2    Network of Workstations 

This study showed the limitations that exist on a cluster of quasi-dedicated 
SUN workstations. The inherent limitations [26] for the parallel implementa- 
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tions resulted from start-up latencies and limited bandwidth of the Ethernet 
connections. Employing load balancing for computationally intensive routines 
led to the most efficient implementations when message passing was reduced. 
The speedup and efficiency results presented in Figures 4 and 6 were computed 
using 

T 
Speed -up = x— (1) 

«    T J com 

and 
Efficiency = 

Speed — up Ti 
1  ~r Tlpl com 

(2) 

where Tcom denotes the communication time and np denotes the number of nodes 
in the sub-cluster. 
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Fig. 5. Speedup for the IBM SP2. 

4.3    The IBM SP2 

A second study was conducted on the IBM Scalable POWER parallel system 
9076 SP2 [23]. This environment supports the MPI language coupled with the 
SP2's Message Passing Library (MPL). The classification of the programming 
model supported by this environment is recognized as a distributed memory 
model, as opposed to a network of workstations. The development of the SP2 
resulted from the need for fast communication hardware for parallel data trans- 
missions. 

The ideal load-balancing model for the SP2 environment exists when node 
interaction incorporates the posting of nonblocking send and receive calls. An 
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efficient implementation of this approach requires that each node post a non- 
blocking receive and then execute the send. This strategy will allow the send 
operator to proceed without additional buffering. Likewise, the timing of wait 
calls should coincide with the availability of the application buffers. Adhering 
to these implementation techniques may reduce the degree of nondeterministic 
execution of the load-balancing model by preserving order and reducing the risk 
of deadlock. The speedup and efficiency results [21] presented in Figures 5 and 7 
reflect the nondeterministic execution of the load-balancing model. 
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Fig. 6. Efficiency for the workstations. 

4.4    Discussion 

The communication hardware and page size irregularity affect the load distribu- 
tion of the Web pages. These effects show in the uneven distribution of pages, 
as well as the erratic behavior in the execution times in Figures 2 and 3. The 
nondeterministic execution of the receives by the program manager [19] may 
be reduced by incorporating the order of receive/send operators for the clients 
(Web sites) requesting Web pages from the Indexer program manager. 

The timing results associated with the network of workstations generated 
were expected. The predicted output for this environment is also displayed in 
the speedup and efficiency results. The self-scheduling, load-balancing model [21] 
indicated that increases in the workload will improve efficiency. The use of 512 
Web pages showed that the model will provide an ideal starting point for in- 
creasing the workload (addition of the genetic operators) without increasing the 
number of Web pages. The speedup and efficiency results associated with the 
IBM SP2 point out the need for a specific load-balancing model. 

140- 



VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing 

1_0 1 Web Page 
O 2 Web Pages 
0 4 Web Pages 

■A 8 Web Pages 
K 16 web Pages 
X 32 Web Pages 

■• 64 Web Pages 
M 128 Web Pages 

~_'." 256 Web Pages 
--I- 512 Web Pages 

Number of Processors (Nodes) 

Fig. 7. Efficiency for the IBM SP2. 

5    Mechanisms for Expanding the Current Load Balancing 
Model 

5.1    Overview 

The social structure associated with honeybee hierarchy provides an ordered 
structure to what can be referred to as the simplest solution to the problem 
of multiway rendezvous. The initial implemented load-balancing model used a 
MPI algorithm [19] as the basis. This model followed the approach of a node 
manager for distributed computing. Similar approaches have been implemented 
for general distributive computing, as well as for the implementation of parallel 
GP load-balancing models. The implementation of the load-balancing mecha- 
nism for the Pseudo-Search Engine Indexer model follows the theory associated 
with the implementation of an Event Manager (EM) [2]. 

The EM concept provides a paradigm for the development and implementa- 
tion of interface mechanisms associate with the three major components of the 
Pseudo-Search Engine. The manager interface paradigm will be an extension of 
the multiway rendezvous model [2]. This model provides the following benefits: 1) 
an extension of the binary rendezvous model where communication involved the 
synchronization of exactly two nodes, and 2) mechanisms for the synchronous 
communication between an arbitrary number of asynchronous nodes. These in- 
terface components of the Pseudo-Search Engine managers are: 

1. Web page indexer manager, M\ 
2. Web crawler manager, M2 

3. Web browser interface manager, M3 

Each of these three managers will control its respective load-balancing mecha- 
nisms based on its respective functionality. 
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5.2    Foraging Web Scouts/Crawlers for the Pseudo-Search Engine: 
A Active Networks Approach Using Genetic Programming 

Overview of Web Scouts/Crawlers. The efficiency of Internet applica- 
tions is being tested by the addition of new applications that compete for the 
same network resources. Studies associated with network traffic [5],[16] show 
the need for adaptive congestion control and avoidance at the application level. 
The side-effects of the current non-adaptive application mechanisms result in 
self-similarity among network transmissions. The need of efficient Web scouts 
(probes) for the Pseudo-Search Engine Web crawlers results from the future 
requirements associated with new applications. The exponential growth of Web 
documents, the incorporation of multimedia applications with real-time demands, 
and a steady increase in WWW users will lead to refinements in efficient design 
and implementation of crawler mechanisms. The competition for bandwidth will 
reward the adaptive and efficient applications. The incorporation of active net- 
works (ANs) methodologies [27],[28] can enhance the development and incorpo- 
ration of the biological model associated with the Pseudo-Search Engine. 

Aspects of the foraging mechanisms used by the bee colony provide a basis 
for scout/crawler mechanisms to be used for congestion control and data trans- 
mission [13]. The factors that influence the amount of foraging are temperature, 
weather, and day length. The weather affects the availability of pollen and nec- 
tar. The temperature coupled with the time of day determines the quantity of 
pollen and/or nectar. The attractiveness of particular crops are rated based on 
several criteria. Similar mechanisms are needed to determine the routing ta- 
bles for retrieving Web pages from distributed computer networks that span the 
Internet and provide a diversity of resources. 

Overview of Active Networks. Active networks research provides insight 
into the software needed to support GP communicating agents being developed 
to retrieved WWW documents from the diverse set of Web sites. ANs enable 
the retrieval of state information from routers that support the infrastructure of 
the Internet by embedding active capsules (components) [11] within each packet 
transmitted via the Internet. The active capsules are executed on the routers 
as the packets traverse the Internet starting at a source (host) and possibly 
terminating at the destination (host). 

Active networks was developed to facilitate efficient network communica- 
tion [35] by incorporating active capsules in the packets that are executed and 
routed by the switches that support the Internet's infrastructure. The ANs model 
was designed to minimize additional computational overhead at the router level 
needed to activate the capsule, but the overhead increases based on the com- 
plexity of the transmitted active capsule component. Additional complexity can 
be added to the basic AN model through the enhancement of the execution en- 
vironments (EEs) [3] which result in virtual EEs. This area of research provides 
execution environments which can be used to program routers to capture state 
information associated with LANs and/or WANs, which in turn can be incorpo- 
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rated into a methodology for creating scouts/crawlers needed for the retrieval of 
Web pages for the Pseudo-Search Engine [30]. 

5.3    Proposed Web Scout and Crawler Mechanisms 

The Web crawlers required to adequately retrieve the growing number of Web 
pages will require some form of adaptive methodology as each Web scout (probe) 
searches for efficient paths (routes) to an adequate source of information (Web 
documents) to build Internet Service Provider (ISP) router tables for the crawler 
mechanisms. The initial step of this proposed methodology is to send out scouts 
to all ISP providers in a manner similar to reliable flooding [20]. The purpose of 
collecting timing and path information to and from the ISP providers reflects the 
need to find efficient routes to the portal associated with the hosts of information 
reflected in its hierarchy structure of sub-hosts. Each provider is viewed as a 
gateway into the information associated with its sub-host Web page directory 
structure. This methodology has the ability to discover new ISPs, as well as new 
sub-hosts providing services to new and existing Web clients. The end effect is 
the faster discovery of new Web pages. 

5.4    Strategies for Communicating Agents Using Genetic 
Programming 

Iba et al. [12] presented studies of communicating agents that reflect the need to 
evaluate techniques for developing cooperating strategies. One application of this 
methodology is the Predator-Prey pursuit problem - a test bed in Distributed 
Artificial Intelligence (DAI) research - that measured the impact of limited abil- 
ity and partial information for agents pursuing/seeking the same goal indepen- 
dently, instead of relying on cooperation to solve a discrete set of subproblems. 
The metrics associated with this aspect of GP research included: 1) applicability 
of GP to multi-agent test beds, 2) observing the robustness (brittleness) of co- 
operative behavior, and 3) examining the effectiveness of communication among 
multiple agents. This co-evolutionary strategy provides a methodology for the 
comprehensive assessment of the impact of robustness (brittleness) of coopera- 
tive behavior and its effectiveness among communicating agents. The robustness 
of a GP program was defined [12] as the ability of agents to cope with noisy 
or unknown situations (unknown test data) within a GP application when com- 
munication among multiple agents was due to effective work partitioning. New 
and potentially improved behavior patterns were found to evolve through the 
use of a fitness measure associated with a co-evolutionary strategy. The panoply 
(multiplicity) of relationships among the communicating agents include: 

- Agents requesting data from other agents (Communicating Agents) 
- Agents negotiating their movements with other agents (Negotiating Agents) 
- Agents controlling other agents (Controlling Agents) 
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6    Conclusion 

The current Pseudo-Search Engine Indexer, capable of organizing limited sub- 
sets of Web documents, provides a foundation for the first beehive simulators. 
Adaptation of the honeybee model for the refinement of the Pseudo-Search En- 
gine establishes order in the inherent interactions between the indexer, crawler 
and browser mechanisms by including the social (hierarchical) structure and 
simulated behavior of the honeybee model. The simulation of behavior will en- 
gender mechanisms that are controlled and coordinated in their various levels of 
complexity. 
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Abstract. Recently, cluster computing which employs many cheap node 

machines is going to replace expensive supercomputers. However, there exist 

only a few of enhanced communication schemes for cheap packet-switches, 

especially in case of collective communication. We devised a new collective 

communication scheme from original dimension-order routing. The proposed 

scheme mainly aims at non-uniform traffic situation by communication locality 

that causes longer communication delays than that in uniform-traffic situation. 

By addition of 'flow bit' in each packet, packets can traverse alternating their 

directions at hop by hop. The new scheme is devised for 2D mesh and 

enhanced the original X-Y routing. 

1. Introduction 

There are broadly two categories of parallel computers with respect to the types of 

their memories. These physical models are distinguished by having a shared 

common memory among each processor or unshared distributed memory in each 

processor. In both, interconnection between processors or memories considerably 

affects whole processing capacity of the parallel computer. 

Interconnection networks are classified into two major classes primarily based on 

interconnection topology. If all adjacent nodes are connected to each other with 

direct link, the interconnection is called direct network. Otherwise, the network is 

called indirect network. The direct network or point-to-point network consists of a 

set of nodes, each one being directly connected to a subset of other nodes in the 

network.    Each node is a programmable computer with its own processor, local 
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memory, and other supporting devices. These nodes may have different functional 
capabilities. As the number of nodes in the system increases, the total 
communication bandwidth, memory bandwidth, and processing capability of the 
system also increase. Thus, direct networks have been popular interconnection 
architecture for constructing large-scale parallel computers. 

When the network traffic is non-uniform, there is the probability of a phenomenon 
which one node or a subset with a few nodes accounts for a disproportionately large 
portion of the total network traffic. This phenomenon is inherent from parallelizing 
of the entire work. It is crucial if the phenomenon arises often from short 
communications occurring frequently in fine-grained parallel processing and incurs 
many short delays that eventually make entire processing slow. The more frequent 
messaging, the higher probability of the phenomenon. 

Mesh is one of popular interconnection networks among many direct networks. 
Till now, mesh interconnection necessarily facilitated wormhole switching. 
Recently, cluster computing which employs many cheap node machines is going to 
replace expensive supercomputers. However, there exist only a few of enhanced 
communication scheme for cheap packet-switches, especially in case of collective 
communication. We devised a new collective communication scheme from original 
dimension-order routing. 

This paper comprises 5 sections: the introduction, prior studies on non-uniform 
traffic, a novel routing scheme of mesh, comparison with simulation and summary of 
the novel scheme. 

2. Prior Studies on Non-uniform Traffic 

One major cause of non-uniform traffic is not-even data-access. As much traffic 
was necessitated around any particular location, this phenomenon is called 'hot spot'. 
Another major cause is group communication among processors including such as 
global synchronization operation. 

Contention caused by accesses to the hot spot is notorious for degrading 
performance of a parallel algorithm [1]. The approach incorporates certain hardware 
in the interconnection network to trap and combine access requests for hot spot relief. 
However, the cost overhead due to added hardware posed a major concern. A less 
costly hardware combining techniques was introduced in [4]. Combining messages 
reduces communication traffic and decreases the average amount of buffer space 
used, what leads to a lower average network delay time. The delay time experienced 
by a message traversing a buffered multistage network could be enhanced with 
message combining under hot spot traffic, also in hardware, in [2] and [3]. 
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Like non-uniform traffic, blocked message also disturbs fluent network traffic. 
Deadlock-free routing and adaptive routing were proposed to prevent low network 
utilization from slowdown in propagation of messages [5] [6]. Deadlock or 
saturation of the message routes has the potential to degrade system performance in 
terms of lower throughput and higher latency similar to that of hot spot. 

Recent approaches to alleviate the effect of non-uniform traffic are shown in 
variety. 

Lee and Chen have proposed an allocation method of hot spots on mesh [7]. 
They divided hot spots into two classes, one to be uniform and the other to be non- 
uniform. They have presented how to minimize hot spot access time in case of 
uniform hot spot. However, They let the case of non-uniform hot spot opened. 
Wang et al. has used extra paths to alleviate hot spot problem on multipath MIN [8]. 
Their approach is to force all hot spot messages to choose some predefined paths and 
non-hot spot messages not to choose the paths that involve any interchange boxes in 
the saturated area or to have only limited overlap. In the approach, additional links 
are necessary thus additional hardware cost is imposed. Fu and Tzeng have 
proposed a scheme to keep synchronization traffic low and avoid hot spot contention 
for shared memory systems [9]. Their scheme constructs a circular list of processors 
waiting for the critical section by dispersing access to the lock. The scheme is also 
founded on MIN. Basak and Panda have used multiple consumption channels than 
single one for each processor on wormhole-routed k-ary n-cube [10]. Their 
approach is to analyze various factors of interconnection network with message 
consumption, and derive the minimum number of required consumption channels for 
alleviating consumption bottleneck. In the approach, additional channel per processor 
is necessary thus additional hardware cost is also imposed. 

3. A Novel Routing Scheme of Mesh 

Many approaches have been proposed for efficient collective communication with 
wormhole switching [11]. Among the approaches, there are mainly two 
methodologies of either tree-based or path-based. Tree-based and path-based 
routings require message partitioning and contention-free condition, to reduce 
blocking time, respectively. They use wormhole-routers for interconnection and the 
routers are rather expensive. If routers do not support special functions such as 
wormhole switching, the approaches cannot be exploited. However, suggested 
routing schemes for collective communication with little special functionality are 
relatively rare. 
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From the programmer's view, the unit of information exchange is a message. For 
efficient and fair use of network resources, a message is divided into packets prior to 
transmission. Message passing is divided into two classes, one for point-to-point 
communication and the other for collective communication. When packet switching 
is applied, collective communications essentially incur non-uniform traffic situation. 
Where the non-uniform traffic situation arise, the center of the situation, becomes 'hot 
spot.' As analyzed in [1], each node around 'hot spot' gets its buffer full, incurring 
concentrated messages suffer high latency due to wait times in each node's buffer. 
Moreover, this phenomenon has influence upon messages that pass by around the 
location. Thus, it is necessary that collective communications should be concerned 
with separate scheme from that of point-to-point communication to alleviate the effect 
of non-uniform traffic. 

There are many routing schemes according to interconnection topologies. Among 
the topologies, mesh is one of most popular topologies. In this paper, we consider 
2D mesh of 7x7 size. In this interconnection, all the boundary nodes are to send 
their packets to the one center node. Deterministic dimension-order routing, X-Y 
routing, is the routing scheme and packet switching is applied. 

To simplify the analysism we assume that; 
< Assumption > 
1. Each node has 4 links of which are directing to north, south, west, and east, 

respectively. 
2. A packet transfers by one hop for one unit time. 
3. A link is also capable of a packet transmission for one unit time. 
4. The packet length is fixed and suitable for the transmission in one unit time. 

Let's see only east-southern part of the whole of nodes. The other three parts are 
the reflections and show the same characteristics. 

{A} X-Y Routing {B} The New Routing 

Fig. 1. Collective communications in east-southern part of 7x7 mesh 
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In figure {1-A}, 4 packets suffer conflicts along the leftmost vertical path. Nodes 

at the same diagonals transmit packets that would conflict at nodes close to the center 

node between the conflicting packets' Y-dimensional displacements along the 

leftmost vertical path. For there is one link for each direction and only one packet 

transfers along that link for one unit time, packets remained are accumulated at the 

vertical nodes. 

When the number of used links are investigated, there are many idle link during 

packet transmissions. Only one of conflicting packets advances and the other 

packets are to be remained in buffer waiting for its order in queue. If the idle link 

can be used for packet transmission, the number of conflicts can be reduced. The 

conflict occurs when both the horizontal link and the vertical link receive packets with 

the same next direction.    Thus, some conditions are set here; 

< Condition > 

1. When a packet comes in the node through any horizontal link, it should go out the 

node through any vertical link. 

2. When a packet comes in the node through any vertical link, it should go out the 

node through any horizontal link. 

And a theorem; 
< Theorem > 

For the times the above conditions are satisfied, a node of 2D mesh is able to receive 

packets with 2 adjacent links at the same time and it is able to send them 

simultaneously with the other 2 adjacent links at the next time if the node's buffer has 

no packet to send prior to them. 

By the theorem, we can set the packet's next directions in advance to make use of 

the links at higher utilization.   The theorem is to avoid conflicts of next directions. 

From the idea, a new routing scheme permits packet transmission at every node 

that alternates its direction heading for its destination. The new scheme is described 

in <Älgorithm>. 

In figure {1-B}, new routing scheme makes use of vertical idle links from the 

figure {1-A}. To keep high the utilization of links, as previously mentioned, both 

the horizontal link and the vertical link should receive packets at same time as little as 

possible in this "one packet transmission for one unit time" network model. With 

the same preset 'flow bit' of each packet, every packet flows with the same direction, 

until no conflict occurs. The same direction of every packet ensures them against 

conflict. Where a conflict occurred, the other packet is to be remained in buffer. 

As all the packets approach either X-axis or Y-axis in the first halves of their routes, 

when compared with the original X-Y routing, there are two advantages in the new 
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scheme.   One is lower possibility of conflicts and the other is higher utilization of 
available links. 

I.           Initialization 
Let every packet has its flow bit. 
Every flow bit is set 0. 
Each flow bit is set before the first transmission. 

II.          Routing 
For the case of flow bit; 
0 : Advance along Y-dimension. Change the flow bit to 1. 

If Y coordinates, advance along X-dimension. 
1 : Advance along X-dimension. Change the flow bit to 0. 

If X coordinates, advance along Y-dimension. 

< Algorithm > A novel routing algorithm for 2-D mesh 

4. Simulation 

An important metric to evaluate a network throughput by a modified routing 
scheme is communication latency, which is the sum of three values: start-up time, 
transmission latency, and blocking time. The start-up time is the time required for 
message framing/unframing, memory/buffer copying, validation, and so on. The 
transmission latency is the time elapsed after the head of a message has been injected 
into network at the source node until the tail of the message is extracted from the 
network at the destination node. The blocking time includes all possible delays 
encountered during the lifetime of a message. For given a source and destination 
node, the start-up time and the transmission latency are static values. In this paper, 
we define the parameters as follows for simplicity and ease of comparison: 

Transmission latency: latency by a packet to traverse its route until arrival at the 
destination 
Blocking time: elapsed time in a node buffer due to busy communication link in use 

The start-up time is not considered and it is relatively very small and fixed time. 
Thus communication latency C of one packet is defined as follows; 
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C = T + B, (l) 

where T is the transmission latency and B is the blocking time. Since we 
assumed that one packet is transmitted along one link for one unit time, T is same as 
the hop count. The blocking time is same as the number of unit times for wait time 
in the buffer. Therefore, blocking time of X-Y routing is 4 unit times while that of 
new routing scheme is 0 unit times in case of <Fig 1>. 

Let us consider the case of all-to-one collective communication in <Fig.2>. All 
the nodes are to send their packets to the one center node, one packet per one node 
and we see only east-southern part of 7x7 mesh. 

With original X-Y routing, every packet goes through X-path in the first half of the 
transmission and through Y-path in the second half of the transmission. In figure 
{2-A}, 3 of 4x4 packets should go through Link 2 and the others should go through 
Link 1. If only this east-southern part is considered, that results in at least 12 unit 
times as communication latency since 4x3 packets should go through Link 1. With 
new routing, every packet goes through X-direction and Y-direction alternately in the 
transmission. In figure {2-B}, 9 of 4x4 packets go through Link 2 and the others go 
through Link 1. Again if only this east-southern part is considered, that results in at 
least 9 unit times as communication latency since 1+2+3+3 packets should go through 
Linkl. 

Partition 2 

Partition 3 

{A} X-Y Routing {B} The New Routing" 

Fig. 2. All-to-one collective communications with X-Y routing and with the new routing 

For ease of comparison, suppose each node has two queues, one for packets that 
come in through X-dimensional link, say X-queue, and the other for packets that 
come in through Y-dimensional link, say Y-queue. We put packets of X-queue in 
higher priority so packets of Y-queue cannot advance until X-queue empties. Then 
with X-Y routing, packets from nodes of Partition 1, those from Partition 2, and those 
from Partition 3 would arrive at the destination in sequence of Partitions.    With the 
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new routing, packets from Partition 1 and Partition 2 would arrive at the destination in 
parallel. 

As the final packet arrived at the destination determines the collective 
communication time, the packet from 'node F' finishes the collective communication 
in either routing. In figure {2-A}, packets from Partition (m) cannot advance along 
Y-dimension until packets from Partition (m-1) do. For nxn mesh, the 
communication latency of the final packet in all-to-one collective communication 
with X-Y routing; 

Cxy=nm, (2) 

where m is the number of Partitions. For nxn mesh, the communication latency 
of the final packet in all-to-one collective communication with new routing; 

CNovel=nm-^(2k-\) = nm-m2, (3) 
where m is the number of Segments in a Partition and a Segment is each row in the 

Partition.    For nxn mesh, 

n = 2m+\. (4) 

Thus communication latencies of both routings are; 

CXY =2/M2 +m, (5) 

and 

CNovel=m2+*n. (6) 

The new routing scheme is simulated under previously stated <Assumptiori>. 
Topology is 16x16 2D-mesh and packet switching is applied. Distribution of 
message locations is random uniform, and the collective messages are to come to one 
center node. <Fig. 3> shows comparison of the original X-Y routing and the new 
scheme. In addition to collective messages, there also exist another point-to-point 
messages. It is to examine whether the new routing scheme has aided packets pass 
by around the center node by reducing conflicts. The total of messages is 128 for 
every case. The number of collective messages is same with the number of nodes in 
the collective communication group, and the number of point-to-point messages is the 
remainder. In the new scheme, collective communication routing is the new devised 
one and point-to-point routing is the original X-Y one. 
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Fig. 3. Comparison of sum of communication latencies on 16x16 mesh 

In <Fig. 3>, we can see the new scheme perform better than the original X-Y as the 
number of collective messages increases. It is due to messages that form two rows on 
either axis heading for the destination. <Fig. 4> shows comparison of the largest 
latencies in both collective communications. 
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5. Summary 

The proposed scheme mainly aims at non-uniform traffic situation by 

communication locality that causes longer communication delays than that in 

uniform-traffic situation. Collective communication or operation including broadcast, 

scatter, gather, and reduce essentially incur non-uniform traffic situation since at least 

acknowledgements are required in any communication. By addition of 'flow bit' in 

each packet, packets can traverse making use of idle links. The new scheme is 

devised for 2D mesh and enhanced the original X-Y routing. Compared with the 

original X-Y routing, there are two advantages in the new scheme, one is lower 

possibility of conflicts and the other is higher utilization of available links. Simulation 

results that when traversing packets' lengths are all the same, reducing the wait time 

in buffer by making use of available links shows a consequence of lower 

communication latency. This new scheme is devised for cheap packet-switches, and 

expected to contribute toward constructing cluster's interconnection for more efficient 

collective communication with slightly increased implementation cost. 
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Abstract. 1 An integrated storage platform for open systems should 
be able of meeting the requirements of deterministic applications, mul- 
timedia systems, and traditional best-effort applications. It should also 
provide a disk scheduling mechanism fitting all those types of applica- 
tions. In this paper, we propose a three-level hierarchical disk scheduling 
scheme, which has three main components: metascheduler, single server 
scheduler, and disk scheduler. The metascheduler provides scheduling 
mechanisms for a parallel disk system or a set of parallel servers. The 
server level is divided in three main queues: deterministic, statistic and 
best-effort requests. Each server may have its own scheduling algorithm. 
The lower level, disk driver, chooses the ready streams using its own 
scheduling criteria. Those systems have been implemented and tested, 
and the performance evaluations demonstrate that our scheduling archi- 
tecture is adequate for handling stream sets with different timing and 
bandwidth requirements. 

1    Introduction 

Over the last years, there has been a great interest on the scheduling of I/O de- 
vices, usually disks, in computer systems [16,9]. However, the requirements and 
the platforms for both multimedia and general systems seemed to be so different 
[7], that people developed specialized systems. Thus, disk scheduling algorithms 
for general purpose systems tried to reduce the access time, while multime- 
dia systems tended to satisfy the real-time constraints for cyclical streams, even 
loosing performance. With the multimedia applications increasing, some authors 
[15] have proposed the design of a new kind of system, named integrated, that 
include facilities to support heterogeneous multimedia and general purpose in- 
formation. In an integrated system, the user may request the start of a new 
I/O request (stream) during run-time. The system must determine, following 
some admission criteria, whether the stream is schedulable to admit or reject 

1 This work has been supported in part by the NSF Award CCR-9357840, the contract 
DABT63-94-C-0049 from DARPA and by the Spanish CICYT under the project 
TIC97-0955 
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the stream. The main problem with most of those systems is that they do not 
provide schedulability guarantees for deterministic applications [6]. 

In this paper we describe a hierarchical three-level disk scheduling scheme, 
which is actually used in MiPFS, a multimedia integrated parallel file system [3]. 
The scheduler has three main components: metascheduler, single server sched- 
uler, and disk scheduler. The metascheduler provides a scheduling mechanisms 
for parallel disk system or a set of parallel servers. The server level of the archi- 
tecture, is divided in three main queues: deterministic, statistic and best-effort 
requests. Each server may have its own scheduling algorithm. The lower level, 
disk driver, chooses the ready streams using its own scheduling criteria. We also 
propose an adaptive admission control algorithm relying on worst and average 
values of disk server utilization. Only streams satisfying the admission algo- 
rithm criteria [2] are accepted for further processing by the disk server. Section 
2 presents some related works. Section 3 describes the multi-level architecture of 
our scheduling scheme, including the extension to a parallel disk system. Section 
4 presents some performance evaluations of our scheduling architecture, which 
were first simulated, and then implemented and tested. Finally, section 5 shows 
some concluding remarks and future work. 

2    Related Work 

There are well known techniques to schedule deterministic real-time tasks [14, 
13]. However, most of them are oriented to fixed priority scheduling, or at most to 
dynamic priority scheduling in very specific situations. However, in I/O devices, 
the timing requirements of many streams are not known in advance, thus a 
global scheduling analysis can not be done [12]. The priority of the streams must 
be dynamically computed taking into account parameters, such as time, disk 
geometry, and quality of service granted to the application. Several algorithms 
have been proposed to satisfy this timing constraints in multimedia systems: 
EDF gives the highest priority to I/O streams with the nearest deadline [19], 
SCAN-EDF order the I/O streams by deadline and the stream with the same 
deadline by ascending order [16], and SCAN-RT orders the streams using an 
ascending order but taking into consideration the deadlines [11,5]. However, 
none of them addresses the problem of integrated environments, where multiple 
types of streams must be scheduled. An integrated scheduling scheme should 
try to reduce the answer time to best-effort requests, but it should also provide 
a time guided disk scheduler giving more priority to real-time stream with the 
nearest deadline. Because most of the disk scheduling schemes proposed up to 
now can hardly make a good trade-off between the former aspects, some multi- 
level hierarchical scheduling architectures have been proposed for deterministic 
tasks in an open environment [6], and for integrated multimedia systems [15]. In 
essence, those schemes create a slower virtual device for each stream or for each 
class of streams. 

We have implemented our scheduling architecture, shown in the next section, 
on a multiprocessor running LINUX [1,18]. We have chosen LINUX for several 
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reasons: it is free, it is updated, and it can include new modules into the OS 
without modifying the kernel continuously. The last feature is very useful to test 
different scheduling policies easily. 

3    Parallel Disk Scheduler Architecture 

Figure 1 shows the scheduling architecture proposed for MiPFS. First, the archi- 
tecture for a single server is described. Then, it is scaled up to show the parallel 
scheduler architecture (metascheduler). Both components are described below. 
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Fig. 1. Parallel Disk Scheduling System Architecture 

3.1     Single Server Architecture 

Each server scheduler consists of two levels. An upper level with three stream 
server schedulers: deterministic, statistic, and best-effort streams. A lower level 
including a disk driver scheduler D, a ready queue R, and a disk. Thus, each 
scheduling decision involves two steps. First, each server scheduler receives streams, 
and, based on its particular scheduling algorithm, inserts them into correspond- 
ing place in its queue. Second, when the disk is free, D chooses one stream 
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among the upper level queues, using its own scheduling algorithm, and put it 
into R. Statistic real-time streams allow a certain percentage of deadline misses, 
as far as the quality of service (QoS) of the client could be met, the service is 
deemed OK. Deterministic real-time streams do not allow any misses. In our 
prototype, the disk scheduling algorithm used at the server's level are: EDF for 
deterministic, SCAN-EDF for statistic, and SCAN for best-effort streams. The 
disk driver scheduler D chooses the stream to be executed next based on the 
dynamic priorities previously computed. In our hierarchical system, each server 
queue has a different priority that is used by D as a criteria to choose ready 
jobs. However, using only this priority criteria will be unfair for best-effort and 
statistic applications, leading to a high percentage of deadline misses, streams 
without a deadline. 

To insert the streams into the servers queues, two major parameters are 
used in our scheduling scheme: deadline and service time. The service time is 
totally application dependent because it depends on the track number, while 
the deadline of a stream may be modified depending on the stream properties. 
Two kinds of deadlines are considered for a specific stream: application deadline, 
d, which is the one set by the application through the driver interface or other 
operations, such as QoS negotiation; scheduling deadline, I, which is a virtual 
deadline internally used by the disk scheduler and computed by the server's 
scheduler, so that I < d. The computation of the virtual deadline / is different 
for each kind of stream. For a best-effort request, I is originally set to a very 
large value that can be dynamically modified. For a statistic stream, I is the 
same as its actual deadline d. A dynamic priority is then computed, based on 
the former parameters, and assigned to the request. 

The intuition after our policy is that if the density of real-time streams is high, 
more disk serving time should go toward real-time streams. Otherwise, best-effort 
requests could be served, because the deadlines of the currently most urgent real- 
time streams are not likely to be missed even if the disk server turns to serve some 
best-effort requests firstly. As the results shown in section 4 corroborate, our 
scheduling architecture has two major features related to other disk scheduling 
schemes. First, the deterministic streams deadlines can be always met for streams 
admitted. Secondly, the average waiting time for best-effort requests is small. 

Obviously, scheduling deterministic streams with high priority means again 
that some statistic streams would miss their deadlines. An alternate approach 
can be used to reduce the number of missed deadlines: temporal degradation 
of the QoS of some streams. Usually some statistic applications, such as video- 
conferencing, can degrade temporally its QoS to benefit other deterministic ap- 
plications, such as telesurgery. To use this scheme, each stream should specify 
the average QoS required and the percentage of temporal degradation during a 
maximum time. Then, the priority of its requests could be reduced to satisfy the 
new requirements. 
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3.2    Metascheduler Architecture 

The meta-scheduler (Figure 1) is a coordinator, whose function relies in three 
aspects: decomposing the incoming streams and dispatching them to the corre- 
sponding disk servers; gathering portions of data from different disk servers and 
sending them back to the applications; and coordinating the service to a specific 
stream among different disk servers. The first two functions are included into 
the parallel disk system interface, while the third one is internal and acts as an 
intelligent inspector among different disk servers. When a new stream arrives, 
it is decomposed into substreams by the meta-scheduler and each substream is 
sent to the appropriated disk server. The meta-scheduler gathers the informa- 
tion from the servers and returns to the application the status of the admission 
tests: successful if all disk servers admitted the new stream, failed in other cases. 
When successful, the meta-scheduler asks the disk servers to commit the re- 
sources. A problem incurred with stream distribution is that some substreams 
could be successful while other could fail. The meta-scheduler gathers the status 
of the substreams and, if there are some deadline misses and the QoS is below 
the required, notifies a failure to the application. Moreover, it notifies to the re- 
maining involved servers to abort the stream and to release the budget allocated 
to this stream. To accomplish it, each stream is assigned a unique id number, 
which is shared by all of its sub-streams , and inserted in a stream dispatching 
table. Whenever a disk server fails to serve a sub-stream, the meta-scheduler is 
informed. According to the unique id number, the meta-scheduler changes the 
status of all the sub-stream corresponding to this stream to failed, informing 
other disk servers of this situation. As a result, all the pending sub-streams of 
this stream are deleted from the queue in each disk server, and the resources are 
freed. This policy avoids wasting resources on failed streams, transferring those 
resources to other successful streams. 

4    Performance Evaluation 

The performance results presented in this section were collected on a Silicon 
Graphics Origin (SGO) machine located at the CPDC of Northwestern Univer- 
sity, and on a Pentium biprocessor, with four disks, located at the DATSI of 
Universidad Politenica de Madrid. The SGO was used to test the scalability of 
our solution on a parallel system including several servers. To test the perfor- 
mance and behavior of our solution, a video server and several remote clients 
were used. The video server transmitted several movies attending to client re- 
quests. The duration of the movies were 30 minutes approximately. 

To test the features of the scheduler, with different scheduling policies, four 
parameters were studied and evaluated: 

1. Disk bandwidth. Several processes executing simultaneous read/write opera- 
tions. 

2. Disk answer time. Several video streams executing read operations simulta- 
neously to best-effort requests. 
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3. Single server performance. Several video clients accessing MPEG videos 
through a 100 Mb/s Ethernet. 

4. Parallel server performance Several video clients accessing MPEG videos 
sorted on several servers through a high bandwidth bus. 

The former experiments were executed using several popular disk scheduling 
policies (FIFO, SCAN, CSCAN, EDF, and SCAN-EDF) to compare them with 
our 2-Q algorithm. 

Figure 2 shows the aggregated bandwidth for a single disk using several 
scheduling policies. It shows that the bandwidth is higher for 2-Q than for the 
other algorithms. Specifically, the results of 2-Q are better than those of CSCAN, 
which is typically used in disk drivers. These results can be explained because 
the deterministic requests are prioritized over the best-effort ones when using 
our scheduler. By doing that, more contiguous I/O requests are sent to the disk, 
and the seek time is reduced. 
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Fig. 2. Disk bandwidth with different scheduling policies 

Moreover, as shown in figure 3, our scheduler has a better response time for 
best-effort requests than those of EDF and SCAN-EDF, typically used in contin- 
uous media systems. These results can be explained because of the opportunistic 
behavior of our disk driver scheduler, that serves best-effort requests in CSCAN 
order whenever it has some free time in a round. It not only reduces the answer 
time, but also minimizes the average seek time for best-effort requests. Those 
features are not present in EDF or SCAN-EDF. 
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Fig. 3. Response Time for Best Effort Requests. 

To test the performance of a single server, we used several video clients ac- 
cessing MPEG videos through a 100 Mb/s Ethernet. All the videos were stored 
on a single server (the Pentium machine). Several priority levels were used to 
accomplish this test. Figure 4 shows that dynamic priorities provide better per- 
formance and QoS than policies with fixed priority. 

To evaluate the behavior of our parallel disk server scheduler, an increasing 
workload was applied to a parallel disk server whose number of disk servers was 
varied from 1 to 16. This experiment was executed on the SGO machine. We 
wanted to measure the maximum number of statistic streams (periodic) served 
before having a deadline miss. Figure 5 shows the results of test 4. The workload 
was composed of deterministic sporadic streams, statistic periodic streams, and 
best-effort requests. As can be seen, the 2-Q algorithm always provides the same 
or better results than the others. That means that 2-Q can serve more statistic 
clients before having a deterministic deadline missed. 

5    Summary and Concluding Remarks 

In this paper, we presented a solution for the scheduling problem in a paral- 
lel integrated storage platform which can satisfy the requirements of real-time 
applications, multimedia systems, and traditional best-effort applications. First, 
we motivated the need of such a solution, then presented the architecture used 
in our 2-Q scheduling architecture. 2-Q has a hierarchical two-level architecture 
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where the upper level, or server level, is divided in three queues for deterministic, 
statistic and best-effort requests, each one using a scheduling algorithm specific 
for that server. The solution proposed for one disk served was generalized for a 
parallel disk server by using a meta-scheduler to control the achievement of the 
deadlines of a parallel stream. 

Performance evaluations, made on a Pentium biprocessor and a SGO ma- 
chine, demonstrate that our scheduling architecture is adequated for handling 
stream sets with different deterministic, statistic, or best-effort requirements. 
Moreover, it maximizes the bandwidth of the disk, while minimizing the aver- 
age answer time for best-effort requests. The results of the evaluation of the 
parallel disk scheduling architecture demonstrates that the fact of satisfying the 
deterministic requested does not diminished the scalability of the solution when 
several disks are used. 
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Abstract 

The Virtual Reality language, VRML97, allows the creation of dy- 
namic worlds that respond to user interaction. However, the serial 
nature of current VRML browsers prevents the full potential of the 
language from being realised: they do not have the power to support 
huge, complex worlds with large numbers of interacting users. This 
paper presents the design of a scalable, parallel VRML server that 
has been built to overcome this barrier. The server distributes the 
task of storing and computing the changing state of the world across 
a set of nodes. Clients connect to the server and receive information 
on their current view of the world, which they can then render. The 
parallel server is implemented in Java, utilising a new, active object 
model called SODA (System Of Dynamic Active Objects) that is also 
described in the paper. 

Topics covered: Virtual Reality, Parallelism, Active Objects. 

1    Introduction 

The Virtual Reality Modeling Language (VRML) [CB97] allows three-di- 
mensional worlds to be described in a platform-independent notation. A 
world description can be downloaded over the Internet into a VRML browser 
that allows the user to explore the world by navigating around inside it. The 
first version of VRML supported only static, unchanging worlds. However, 
the later VRML97 [CBM97] standard supports "moving" worlds that can be 
both dynamic, and responsive to interaction between a user and the world. 
It is therefore possible to envisage the creation of huge, complex worlds 
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with thousands of interacting users. For example, models of cities could 
be built to include moving vehicles as well as the buildings. In the future, 
with advances in traffic sensing technology, it may even be possible to build 
models of real cities that show accurate traffic flows in real-time. 

Despite the obvious potential, VRML worlds available on the Internet 
have so far been relatively small, with little movement or interaction. This 
is due to the nature of the VRML usage model, in which the description of 
the VRML world is downloaded into the users browser and run locally. This 
causes several problems: 

• 

• 

downloading the complete world description to the VRML browser 
takes a long time for large, complex worlds. 

large worlds can have huge memory demands that a user's desktop 
machine may not be able to satisfy. 

• the user's desktop machine must both continually update the state of 
the world (as objects move and the user interacts with it), and also 
render a view of the world in the browser window. The processing 
power required to do this may, for large complex worlds, be greater 
than the user's machine can provide, and so the user may see slow, 
jerky movement. 

• because the world runs locally, in the user's browser, there is no pos- 
sibility of interaction between different users in the same world. This 
precludes both direct interaction between users who meet each other in 
the world, but also indirect interaction, for example one user building 
a structure that can be seen by others. 

• it is much more difficult to arrange for the world to change in response 
to external events. For example, if a virtual world models the current 
state of part of the real world (e.g. traffic flow in a city, footballers 
playing on a pitch) then we would wish to move the virtual world's 
objects to reflect the real-time changes to the objects in the real world. 

This paper presents the design of a system that has been built with the 
aim of directly addressing these problems, and so supporting huge, complex 
worlds filled with large numbers of interacting users. 

Our design provides a client-server implementation of VRML, in which 
a server holds the state of the virtual world. The state changes over time as 
objects move, and users interact with the world. Many clients, each running 
a VRML browser, can connect to the one server and so share a single world, 
interacting with each other as required. When a client first connects to the 
server, it receives only the set of geometric objects that are visible from 
its initial starting position. This minimises download time. As the viewer 
moves and interacts with the world, it receives from the server updates 
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to the position of any geometric objects in the field of vision that have 
changed, and also information on any geometric objects that have become 
visible. Therefore, the client has little work to do other than render its view 
of the world. It makes sense to leave rendering to the client as PCs and 
workstations have powerful graphics cards dedicated to this task. 

A consequence of this architecture is that when supporting complex sys- 
tems with many users, the server will have much work to do. We do not 
want to just move the system bottleneck from the client to the server, and so 
we have designed a scalable, parallel VRML server that allows the work of 
computing the state of the world, and supporting clients, to be spread over 
a set of nodes. The parallel server is implemented in Java, utilising a new, 
active object model called SODA (System Of Dynamic Active Objects). 

2    VRML Execution Model 

In this section we give a basic overview of the VRML97 execution model, 
focusing on those aspects that are important for the design of a parallel 
implementation. 

2.1    Basic Terminology 

A VRML world is described in terms of an acyclic and directed scene graph 
populated with nodes of various types and defined in one or more textual 
files. The scene graph is hierarchically structured through grouping nodes, 
which may contain other nodes as descendants; a Transform node, for ex- 
ample, describes geometrical transformations that influence all descendant 
geometric nodes. 

VRML97 has 54 pre-defined node types, abstracting from various real- 
world objects and concepts. They reach from basic shapes and geometry, 
over grouping nodes and light sources to audio effects. Every node type 
stores its state in one or more typed fields. Examples are a Transformation 
node's translation, orientation and scaling fields, a Material's colour and a 
SpotLighVs intensity. 

Other nodes are responsible for driving and controling the dynamic be- 
haviour of a scene, namely Sensor nodes, various Interpolator nodes and 
Script nodes. 

Sensor nodes are distinguished in that they are reactive to the passage 
of time or to user interaction (e.g., "touching" of objects, user proximity, 
etc.). If stimulated, a sensor node dispatches an event on one or more of 
its eventOut fields (e.g., a TimeSensor can send an event at regular time 
intervals on its cycleTime eventOut field). All events comprise a typed value 
and a timestamp, which is determined by the sensor's trigger time. Events 
can be propagated from the producing eventOut field along routes to the 
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eventin fields of other nodes. Upon receiving an event, nodes may change 
their state, perform event processing or generate additional events. Routes 
are determined by the edges of a directed routing graph that mediates one- 
way event notification between nodes. The structure of this routing graph 
is completely orthogonal to the scene graph hierarchy. 

Event processing at a node can take the form of simple key-framed in- 
terpolation as this is done by interpolator nodes. Script nodes are more 
powerful in that they allow arbitrary, author-defined event processing and 
generation. A world author can associate a Java or JavaScript function with 
each eventin field. 

2.2 Event Cascades 

When processing an event that it has received, a node may not only change 
its state, but also generate additional events. In this manner, a single sensor 
event can trigger an event cascade involving a subset of the routing graph's 
edges. All events in an event cascade are considered to occur simultaneously 
and therefore carry the same timestamp as the initial sensor event. To 
prevent infinite loops in a cyclic routing graph, every eventOut is limited to 
at most one event per timestamp1. 

Ideally, all events would be processed instantaneously in the order that 
they are generated. However, in a real implementation, there will always 
be processing delays. Furthermore, sensor nodes may generate events more 
frequently than the resulting event cascades can be evaluated. The VRML97 
specification addresses this issue by requiring implementations to evaluate 
events in increasing order of timestamps. This ensures that implementations 
produce deterministic results. 

Multiple eventOuts may route to the same eventin, in what is called a 
fan-in configuration. If events with the same timestamps arrive, they "shall 
be processed, but the order of evaluation is implementation dependent." 
([CBM97], paragraph 4.10.5) 

2.3 Discrete and Continuous Events 

Most events produced during world execution are discrete: they happen 
at well-defined world times, e.g. as determined by the time of user in- 
teraction. However, TimeSensor nodes also have the capability to model 
continuous changes over time: A browser generates sampling events on the 
fraction-changed and time eventOut fields 2 of TimeSensors. The sampling 

xCalled loop breaking rule in VRML ([CBM97], paragraph 4.10.4. 
fraction.changed describes the completed fraction of the current cycle as a float value 

in the interval [0,1]; time sends the absolute time in seconds since Jan 1, 1970, 00:00:00 
GMT as a floating-point value. 
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Figure 1: Simple Event Cascades for Different Sensor Events (cir- 
cles depict different field types: filled-B-eventOut, empty-H-eventln, semi- 
filled -H-exposedField) 

frequency is implementation dependent, but typically, samples would be pro- 
duced once per frame—e.g., once for every rendering of the user's view on 
the world. 

Additionally, VRML requires continuous changes to be up-to-date during 
the processing of discrete events, i.e., "continuous changes that are occurring 
at the discrete event's timestamp shall behave as if they generate events at 
that same timestamp" ([CBM97], paragraph 4.11.3.). 

Example 1 Figure 1(a) depicts a simple event cascade. The TimeSensor's 
isOver eventOut sends <true, touchTime> whenever the user moves 
the pointing device over its geometry and <false, retractTime> 
upon retraction. 

These events are routed to a Script node—amongst other destinations 
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in a fan-out configuration—which performs author-defined event pro- 
cessing. In this example resulting in colour value being sent to a Ma- 
terial node. A world author might employ such a scenario to provide 
user feedback for the touch of a button. 

Example 2 The TimeSensor in figure 1(b) produces continuous events con- 
taining a number in the range [0,1] on its fraction-changed field with 
the passage of time. These continuous events are passed to a Posi- 
tionlnterpolator that animates the translation vector of a Transform 
node. In this way, VRML provides support for linear key-framed an- 
imation. A fan-in situation can arise for the Transform node, if both 
Positionlnterpolators send events with identical timestamp. 

2.4    Sequential Implementation 

Algorithm 1 shows the pseudo-code algorithm of a typical VRML97 browser. 
If no discrete events are scheduled, continuous events are sampled as quickly 
as possible, adapting the sampling frequency to hardware capabilities. This 
event evaluation is alternated with frame rendering of the new geometric 
layout. 

Scheduled discrete events force the evaluation of all continuous events at 
that same time (see up-to-date requirement above). If any discrete events 
have not yet been evaluated, no rendering takes place. 

Algorithm 2 shows the evaluation of the event cascade for each initial 
(sensor) event C» or D{ (mapped to E). The loop breaking rule prohibits 
cyclic loops by limiting each eventOut to only one event per timestamp. 
Otherwise, R' contains all edges of the routing graph pointing out of E. 
R's fan-out destinations Irii are evaluated in turn. Possibly, event process- 
ing at the destination Irii may result in the creation of further events E'^ 
and therefore recursive invocations of algorithm 2 until the complete event 
cascade is evaluated. 

Algorithm 2 represents only one possible way of ordering event process- 
ing of conceptually simultaneously occuring events for sequential execution. 
Beyond the requirement that events be evaluated in timestamp order, VRML 
does not specify any ordering of event processing. I.e., the evaluation order 
of branches in a fan-out configuration as well as for eventln processing at 
fan-in nodes is implementation dependent. 

3    Opportunities for Parallelism 

As worlds become more complex, the main loop of algorithm 1 takes more 
time, which can result in a reduced sampling frequency for continuous events, 
and therefore jerky scene updates. Further, the system may become over- 
saturated with discrete events if they are generated more frequently than 
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Algorithm 1 Sequential VRML97 Pseudocode 
lasttime •<— 0; 
loop 

now ■*— Browser.getWorldTimeQ; 

if any discrete sensor eventOuts £; scheduled with lasttime < tEt < 
now, e.g., asynchronous user input, or finished TimeSensor cycle then 

tn 4- time of most imminent Sf, 

D<-{Dj\tDj = tD}\ 

C <- sample of all continuous eventOuts at time to; 

evaluate event cascade for each d G C; /*algorithm 2*/ 
evaluate event cascades for each Dj G D; /*algorithm 2*/ 
lasttime = £p; 

else 
C   <—   continuous  events   sampled  from  all  active   and  enabled 
TimeSensors at time now; 

evaluate event cascades for each CiinC; /*algorithm 2*/ 
lasttime = now; 
rendering of the new geometric world layout; 

end if 
end loop 

Algorithm 2 Event Cascade Evaluation for a sensor Event E 
if eventOut E has already 'fired' for time tß then 

stop; loop breaking rule 

else 
R' 4- {(Out, Jiii) C R\Out = E) 

process all Ini, potentially generating a set of new events E[j for each 
In{; 

evaluate event cascades for all E'^ produced by using this algorithm 
recursively; 

end if 
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Figure 2: Parallel Evaluation of Single Event E. All events have the same 
timestamp tß. 

the system is able to evaluate their event cascades. In this section we ex- 
amine opportunities for tackling these problems by parallelising the VRML 
execution model. 

3.1 Parallelism Within a Single Event Cascade 

In algorithm 2, if a single initial sensor event E has a fan-out configuration, 
all eventin fields Irii linked to it can be processed in parallel (see figure 
2). Recursion may lead to an even higher degree of parallelism. This is 
possible without affecting VRML97 semantics, as no evaluation order for 
fan-out events 7n, is defined. As event notification is the sole communication 
mechanism between nodes, there can be no undesirable interference between 
two execution paths. 

Due to fan-in configurations, two execution paths might reunite at one, 
common node. To avoid unwanted side effects in updating the node's private 
fields, it is paramount that event processing is performed sequentially at the 
node. I.e, some form of synchronisation is necessary for incoming events—for 
example a queue which buffers pending requests for processing. 

Widely branching event cascades produced by single sensor events may 
exhibit high degrees of parallelism. The grain size is only determined by the 
complexity of event processing in the participating nodes. 

3.2 Parallelism between Event Cascades 

If several initial sensor events are scheduled with the same timestamp, 
VRML treats them as if they are members of the same event cascade. Fan- 
ins of events with the same timestamp are allowed and ordering is in the 
implementation's responsibility. Multiple writes to a single eventOut field 
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Figure 3: Event Cascade with several Initial Events E{ all of which have the 
same timestamp tg. 

are inhibited to satisfy VRML's loop breaking rule. 
All events Dj and Cj scheduled in the main loop of algorithm 1, can 

therefore be evaluated in parallel3 (see figure 3), with the same restrictions 
for fan-in as discussed in 3.1. 

3.3    Routing Graph Partition 

Parallelizing event cascades with different times is more intricate. The 
VRML specification requires that events be evaluated in timestamp order. 
Parallel processing of event cascades for different timestamps could result in 
a node processing events out-of-order and thus violating the VRML specifi- 
cation. 

However, if we can identify disjoint partitions of the routing graph, then 
parallelism can be exploited. The routing graph is defined as a structure 
connecting eventin fields to eventOuts. We define a partition as all routes 
that are reachable from any node, following all eventOuts at the destination 
node. 

For disjoint partitions, event cascades with different times can run in 
parallel, as no interference can take place. Within a partition, such cas- 
cades have to be serialised in order of timestamps. This ignores the issue of 
a dynamically changing routing graph4, which would require the dynamic 
examination of the routing graph. 

This approach might minimally influence the perception of the world: 
users may notice the effects of out-of-order changes to visible nodes. How- 
ever, we can assume that such differences in timestamps would only be in the 

3i.e., by kicking off several instances of algorithm 2 for each event 
4Script nodes in VRML might be programmed to change the topology of the routing 

graph dynamically 
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Figure 4: Parallel VRML Client-Server Model 

range of a few milliseconds, and this is therefore unimportant for almost all 
worlds. Causally related behaviour will always be presented in the correct 
order as this is sequentialised through dependencies in the routing graph. 

3.4    Further Parallelism 

Beyond the above we identified further opportunities for parallelism are as 
below: 

Evaluation of Sensor Nodes can be done in parallel if their required sen- 
sor information is available (e.g. current time, user location, etc.). 
Sensor nodes may then register discrete events with a Scheduler. 

Scheduler The whole of algorithm 1 may be replicated for each partition 
of the routing graph. Again, synchronised time must be available at 
each location. 

4    Implementation 

The following gives a quick overview of the System Of Dynamic Active 
Objects (SODA), which is used as programming model and runtime system 
for implementaiton of the VRML server. A more in-detail description of 
SODA will soon be available as a technical report. 

4.1    Active Objects Programming Model 

SODA adopts a programming model of coexisting active and passive ob- 
jects, similar to ProActive [CV98]. Active objects encapsulate a concurrent 
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activity and have a queue to buffer method invocations for serial processing 
by this activity. Neither explicit thread programming nor intra-object syn- 
chronisation code is required. Active objects are globally addressable and 
passed by reference. In contrast, passive objects can only exist privately to 
an active object and consequently have pass-by-value semantics. 

Programs consist of a collection of active and private objects, which, 
if distributed over several processors, proceed in parallel. Unlike ProAc- 
tive, active objects are fully location transparent and do not require explicit 
mapping to a parallel platform. 

Method calls are by definition non-blocking. The callee can proceed 
without waiting for the caller to return. Upon termination of the method 
the callee may hand back results in a future mechanism, similar to ProActive 
[CV98]. In addition, SODA defines Collectors as an additional inter-object 
synchronisation mechanism. These are capable of detecting termination of 
a method call together with its complete cascade of subcalls and inform an 
arbitrary active object about this condition. 

4.2    SODA Runtime 

The SODA runtime system is characterised by several key features: 

Dynamic Load Balancing Through Active Object Migration. Trans- 
parently to the programmer, the SODA runtime system is responsible 
for spreading out active objects during runtime with the aim of dy- 
namically maximising processor utilisation for the overall system. This 
is important where active objects have relatively high fluctuations in 
their resource requirements. 

Active Object Multiplexing on Threads. Active objects may be mul- 
tiplexed onto threads. This prevents thread flooding and encourages 
programmers to use relatively many active objects without worrying 
about negative performance impact. 

True One-Way Method Calls. Many related systems (e.g. JavaParty 
[PZ97] and ProActive) use RMI as transport protocol for method in- 
vocations on active objects. This has disadvantages for modelling an 
active objects model. This has the following disadvantages: 

RMI, being designed as a client-server protocol does not provide an 
asynchronous communication mechanism. Related systems based on 
RMI overcome this by creating an additional thread at the caller to 
wait for method call termination, which incurs performance penalties. 
Additionally, RMI opens a TCP/IP port for every remote object allo- 
cated. This is not optimal for a large number of active objects. 

In contrast, SODA uses a socket-layer communication protocol to im- 
plement one-way calls. At most one TCP/IP connection is established 
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Figure 5: Mapping VRML onto Active Objects 

between every pair of hosts. SODA also exploits "unexpected locality" 
of active objects [PZ97]. I.e., no expensive loopback communication 
takes place if caller and callee reside on the same JVM. 

4.3 Mapping onto Active Objects 

VRML nodes and SODA active objects share many commonalities. Follow- 
ing the object-orientation paradigm, communication among VRML nodes 
can only take place through a well-defined interface. In both systems, in- 
coming messages trigger the asynchronous execution of member functions. 

We applied a mapping between components of the two systems (see figure 
5) as follows: VRML nodes can be directly mapped onto active objects. 
Those nodes may then perform parallel event generation or processing, which 
is the mainstay for parallel event cascade evaluation. 

Asynchronous VRML event passing is mapped onto the asychronous 
and one-way communication semantics of SODA. Figure 5 shows how all 
elements of the VRML execution model find a valid equivalent in SODA. 

Distributed Schedulers (see 3.4) can be implemented as active objects. 
SODA's collector mechanism is used to inform the scheduler object about 
termination of an event cascade. 

Altogether, our experience from creating a parallel VRML prototype 
showed that SODA offers a good match for supporting VRML nodes, be- 
haviours and the routing mechanism. 

4.4 Client-Server Communication 

Client-server communication is based on a light-weigt datagram protocol 
for performance reasons. Clients may communicate with any server node 
to send the user's position and to receive information about objects within 
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their respective view volume (see figure4). Client-server communication can 
be reduced by performing server-side culling or area of interest management 
[SZ99]. 

4.5    Preliminary Performance Results 

For preliminary performance testing we used a network of four Pentium 
II 233 Mhzworkstations, running Linux 2.2.5 and Sun's JDK 1.2.2, as our 
server. The machines were networked via fast ethernet connections. The 
client was running Windows NT on a Pentium 11-300 without hardware 
graphic acceleration, connected via a only 10Mbit Ethernet on the same 
LAN. We used CosmoPlayer 2.1 as VRML browser. 

As a simple experiment, we created a scene graph containing a primitive 
geometric objects. The translation of each object was influenced through a 
Script node driven by a separate TimeSensor. To get results for varying com- 
plexity of event processing, the granularity of the Script node was changed 
over a series of tests by cycling through an empty loop. The experiment was 
performed for one and four TimeSensor-Script-Object triplets, once locally 
(in the browser's JVM), then remotely (on the server). The first remote run 
uses only one server node, while the second employs all four. 

Script Granularity 0 104 105 106 107 108 

local 1 TS -> 1 Scipt 40.3 39.3 37.8 27.8 7.69 1.29 
remote 1 TS -> 1 Scipt 89.3 88.7 88.9 87.9 13.6 1.14 

local 4 TS -> 4 Scipt 28.8 28.1 25.4 12.7 2.18 0.2 
remote 4 TS ->• 4 Scipt 27.6 25.7 25.7 25.8 16.6 5.5 

Those values are slightly influenced by fluctuations on the shared network 
connecting client and server. However, it is interesting to notice that even 
without parallelism the client-server approach gives much higher update 
rates. This can be related to the cost of software rendering at the client, i.e. 
the two machines share world evaluation and rendering. 

For four triplets, the update rate is similar when scripts have low event 
procesing costs. As those get higher however, the performance of remote 
parallel execution becomes visible. 

5    Conclusion and Further Work 

This paper has presented a novel, scalable, client-server based approach 
to implementing complex virtual worlds with many interacting users. The 
clients that browse the world are protected from the costs required to sup- 
port a large, complex world by the server, which carries the burden of pro- 
gressing the state of the world, and determining the fraction of the world 
that is visible to each client. The work of the client is restricted to receiving 
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updates to the part of the world that it can see, and rendering a view of this. 
The server is able to support large, complex worlds due to its scalable, par- 
allel design. The paper has shown how a parallel implementation of VRML 
can be built without changing the semantics of the execution mechanism. 
The results from the prototype show that real performance gains can be 
achieved. Experience in building the prototype using SODA has shown the 
power of the active object model for parallel, object-based software design. 

Future work will include tuning the system, and analysing its ability 
to scale up to huge, complex worlds, with many users, running on a larger 
number of parallel nodes. 
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Abstract. A review will be given on the simulation of large simple cel- 
lular automata with up to one million times one million elements. Here 
each site of a large lattice carries a binary variable the orientation of 
which depends on its lattice neighbours orientation at the previous time 
step. Single-bit processing allows for high speeds (except for probabilistic 
rules) and saves memory. Geometric parallelization is easy since only a 
small amount of message passing at predictable times is required. Appli- 
cations will emphasize biology: Game of life, ageing, sex. 

1 Introduction 

Parallel computing for cellular automata and Ising-like systems has a 30 year 
old history, long before real parallel machines became widespread. For each vari- 
able then can be stored in a single bit, and by logical bit-by-bit operations 
dealing with 32 variables simultaneously through one single 4-byte command. 
Many aspects of vector and parallel computing, like the division of a lattice 
into sublattices of checkerboard-type, were used in this way before they were 
used on vector computers. Physicists call this method multi-spin coding, and 
Prof. J.A.M.S Duarte is a Porto expert. Since my last review [1] large parallel 
machines became widespread, and also different applications were found. 

Cellular automata are discrete in space, time, and values. For us here we 
assume that each site i of a large lattice carries a variable rii which is either 
+1 or -1 (the spin language preferred by physicists), or 1 and 0 in the language 
of computer science which is more appropriate for multi-spin coding. The value 
n, at the next time step t + 1 is completely determined by that of its nearest 
lattice neighbours at time step t. These are deterministic automata; do you call 
a cigarette automat working if with probability p ~ 0.4 it delivers a pack of 
cigarettes ? 

The next section deals with multi-spin coding on a scalar machine, then we 
deal with domain decomposition of large lattices on parallel computers, and 
finally we summarize some applications with up to 1012 sites. 

2 Multi-Spin Coding 

Let us assume we want to study an infection process. Every site on a large lattice 
is either sick (n = 1) or healthy (n =0). Sick sites infect their neigbours. Thus 
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rii(t + 1) is sick at the next time step t + 1, if at time t at least one of its 
neighbours was sick. On a one-dimensional chain these two neighbours of site i 
are i - 1 and i + 1 which means that a logical OR gives the desired result: 

nnew(i) = n(i-l)   .or. n(i+l) 

when in Fortran n and nnew are logical arrays. Now many bits are wasted to 
store the one-bit variables nnew and n in one computer word. If we store 32 such 
variables in one computer word, we rewrite the above statement as 

nnew(i) = ior( n(i-l)   , n(i+l)) 

where ior is a bit-string command performing the logical-or operation for each 
pair of bits separately. Thus one command does 32 (or 64) operations in paral- 
lel on a scalar computer. In the programming language C the same bit-by-bit 
commands are part of the standard, using different symbols for the operations. 

If of the chain we would store sites 1 to 32 in the first 4-byte integer n(l), 
sites 33 to 64 in n(2), etc, then the above statement would not deal with the 
nearest neighbours of site i. Therefore, if we use LL = L/32 words n(l), n(2), ... 
n(LL) for L sites, we store site 1 in the first word, site 2 in the second, ..., site 
LL in the last word, in the first bit position. Then sites LL + 1, LL + 2,..., 2LL 
are stored in the second bit position of the same words n(l), n(2), ... n(LL), then 
2LL +1 to 311 in the third bit position, until the last bit of the last word n(LL) 
is filled with site L. Then the above statement really works for i = 2; for the 
extreme words n(l) and n(LL) the left and right neighbours are n(LL) and n(l), 
respectively, shifted circularly to the left or right by one bit. In d dimensions, the 
integer array n needs a second index going from 1 to Ld_1 as usual. Complete 
Fortran programs are given in [1]. 

In the analysis of simulated configurations it is very helpful to have a function 
computing the number of bits which are set. Fortunately, the late Seymour Cray 
was aware of that problem and gave us this function under the name popcnt. 

These programs are also vectorized and speeds of the order of 109 sites could 
be reached already a decade ago on one vector processor. The next section de- 
scribes the parallelization. 

3    Parallel Computers 

While multi-spin coding allows parallel treatment of 32 variables, we can get 
additional speed on parallel computers with many processors, distributed mem- 
ory, and message passing, by using simultaneously all these processors on one 
large lattice. (How to do different lattices on different processors by replication 
presumably does not have to be explained to this conference.) Since I do not 
have access to a multitude of such parallel machines, I just learned the machine- 
dependent message passing routines on the machine for which I had the account, 
and since 1996 this is a Cray-T3E with 64 bits per word. Message passing com- 
mands start with shmem. 
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do 3 itime=l,max 
info = barrier() 
if(node.gt.O) call shmem_get(n(l,0),n(l,Lstrip),LL,node-l) 
if(node.eq.O) call shmem_get(n(l,0),n(l,Lstrip),LL, np -1) 
info = barrier() 
do 6 j=l,Lstrip 

;       periodic boundaries left and right via circular shift 
n(0,j)=ior(ishft(n(LL,j),-l),ishft(n(LL,j),63)) 

6 n(LLl,j)=ior(ishft(n(l,j),l),ishft(n(l,j),-63)) 

ncb=0 
do 7 j=l,Lstrip 
if(j.eq.2) then 
info = barrier() 
if(node.lt.np-1) call shmem_get(n(l,Lp),n(l,l),LL,node+l) 
if(node.eq.np-1) call shmem_get(n(1,Lp),n(l,l),LL,  0 ) 
info = barrierO 
end if 
do 7 i=l,LL 
nl=n(i,j-l) 
n2=n(i,j+l) 

n3=n(i-l,j) 
n4=n(i+l,j) 
n5=n(i,j) 
nl2=ior(nl,n2) 
n(i,j)=ior(ior(iand(nl,iand(n2,n3)),iand(n5, 

1 iand(n4,ior(nl2,n3)))),iand(ior(n5,n4), 
2 ior(iand(nl2,n3),iand(nl,n2)))) 

7 if(n(i,j).ne.n5) nch=nch+popcnt(ieor(n(i,j),n5)) 
info = barrierO 
if(node.eq.O) then 
do 8 iadd=l,np-l 

call shmem_get (idummy.nch, 1, iadd) 
8 nch = nch + idummy 

endif 
info = barrierO 
call shmem_get (nch,nch,1,0) 
info = barrierO 
if(node.eq.O) print *, itime,nch 
if(nch.eq.O) goto 9 

3   continue 
9 continue 

Here shmem get (target,  source,  length, node) gets from the processor 
with number node the information starting there with the word source and 

-185- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

IV 

extending over length words in total. It stored it in the memory of the cur- 
rent processor, with the first memory location called target. For example, call 
shmem get(n(l,0),n(l,Lstrip),LL,node-l) gets from processor node-1 to 
the present node the LL words n(l,Lstrip) to n(LL,Lstrip) and stored them in 
the words n(l,0) to n(LL), 0). 

We divide a large Lx L square lattices into Np strips of length L and width 
Lstrip = L/Np. Each strip is stored on one processor; in addition, each processor 
stores the lowest lattice line of the strip on the upper processor, and the highest 
lattice line of the strip on the lowest buffer. These two buffers are updated after 
every iteration via the shmem get command. Thus message passing happens at 
predictable times, and the amount of transferred information is much smaller 
than the total amount of stored information provided LstriP 3> 1. 

The sample program core simulated the Griffeath majority rule on the square 
lattice: A spin is flipped if and only if more than half of its four neighbours point 
into the opposite direction. Loop 7 mostly translates these words into logical 
statements for the bit-by-bit operations. To see if a stable configuration is reached 
which will remain unchanged forever we calculate the number nch of sites which 
have flipped. If this number, summed over all processors, is zero, then we can 
stop the iteration. This particular cellular automata rule [2] was selected since 
the simulation indeed comes to a stop after a moderate number of iterations, 
thus allowing the simulation of L = 106 with moderate computing time. (For 
simplicity, the program uses sequential instead of simultaneous updating, info 
= barrier () forces synchronization of all processors. There are more elegant 
ways than loop 8 to sum over all processors.) 

4    Applications 

4.1    With Multi-Spin Coding 

One of the most famous applications of cellular automata are Frisch-Hasslacher- 
Pomeau lattice gases for hydrodynamics on a triangular lattice. However, in 
recent years the emphasis in this area seems to have shifted to the lattice Boltz- 
mann equation which goes beyond cellular automata and is thus not reviewed 
here [3]. 

Immunology was simulated with cellular automata, sometimes using the 
above methods for huge lattices; but no consensus is evident from the litera- 
ture which automata rule is best; thus we refer to [4]. 

(In this immunological context, a vectorization technique was developped 
which allows to write one Fortran program for general dimension, working e.g. 
on the square lattice, the simple cubic lattice, and the four- or five-dimensional 
hypercubic lattice, though not with one bit per spin. The number of neighbours 
in d dimensions is 2d, and an inner loop over such a small number of neighbours 
would be very inefficient. Thus the inner loop went through all lattice sites. In 
the loop body, for every direction one line was added which was executed if 
the dimensionality d was large enough. Such if-statements again normally are 
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deadly for efficient vectorization. However, by denoting d as a fixed constant 
idim through parameter (idim=3), the if-conditions were evaluated at compile 
time and the loop was efficiently vectorized.) 

The Game of Life has fascinated many through its variety of configurations. 
It uses the 8 nearest and next nearest neighbours of the center site. If the center 
site is empty it becomes occupied at the next time step if and only if three 
neighbours are occupied; if the center is occupied it remains so for the next time 
step if and only if two or three of its eight neighbours are occupied. A multi-spin 
coding program was published by Gibbs [5] though Franco Bagnoli (priv.comm.) 
has a faster one. Fig.l shows how the final density of occupied sites depends on 
the initial density [5]. Large lattices confirmed the theoretically expected power 
laws here for both low and high densities. 

3 
Game of Life up to 160,000 * 160,000: concentrations in percent 
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Fig. 1. Variation of equilibrium density in Game of Life with initial density if the sites 
initially are occupied randomly. [5] 

Much simpler are the Q2R cellular automata approximating the Ising model. 
Each spin flips if and only if it has as many up as down neighbours. Thus, if 
interpreted as an Ising magnet, the spin flips if and only if such a flip does not 
change the energy. We have here a reversible microcanonical and non ergodic 
algorithm which neverless numerically gives the correct spontaneous magneti- 
zations in two and three dimensions. The dynamical behavior, however, is not 
understood [6]. This algorithm is a special case of the Creutz demon method 
recently reviewed by Aktekin [7]; we merely let the size of the energy reservoir 
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of the demons go to zero. Careri [8] pointed out a possible biological application 
of Q2R. 

4.2    Other Bit-Strings 

In the above applications, all bits within one word could be treated efficiently 
by multi-spin coding since they all played the same role and thus were treated 
in parallel. This is no longer the case when the position of a bit has a special 
meaning. In the Penna model of biological ageing [9], the bit position corresponds 
to a "year" or other time unit in the life of the individual: A bit set at one year 
means that from this year on until the death of the individual a dangerous 
inherited disease affects the health; three or more such active diseases kill. Thus 
the bit-string in this Penna model symbolizes the survival aspects of the genome; 
the age of genetic death is stored in it from birth, but at present we know only 
those inherited diseases which have become active. (See the movie Gattaca on 
the question whether a future is desirable when we can interpret the human 
genome such that we know all these genetic defects long before they become 
active.) 

Thus each individual, characterized by a string of 32 bits, lives until three set 
bits kill it. Before, if gives birth provided it has reached the minimum reproduc- 
tion age; for each child a random mutation sets one of the bits to one compared 
with the bit-string of the parent. To avoid an exponential growth of the popu- 
lation, a Verhulst factor like in the logistic equation limits the population from 
above. Now we no longer can deal with the bit-string through multi-spin coding 
in the above parallel sense, since a bit for year 2 plays a different role than a bit 
for year 30. But the bit-handling techniques are useful for both methods. 

Numerous simulations of this model, as reviewed recently [10], gave agree- 
ment with the Gompertz law of a mortality function increasing exponentially 
with age, or with the lifestyle of the Pacific Salmon who dies shortly after mar- 
riage. Very recently [11] it was pointed out that in experiments with flies one may 
have a genetically homogeneous population but still a Gompertz law whereas the 
Penna model would in this case predict all genetic deaths at the same age; this 
critique was combined with a more complicated model avoiding this disadvan- 
tage. 

For parallel computing it is not only easier but also better to simulate Np 

separate populations on Np processors in parallel, than to distribute one popu- 
lation among the different processors. In the latter case, after some time one of 
the processors, which happened to have the fittest ancestors, will carry all the 
individuals and the others none, if no load balancing [12] is made. 

The above algorithm refers to asexual cloning; sexual reproduction combines 
one female bit-string and one male bit-string to give the genome of the child. 
Compared to cloning, sexual reproduction has the immediate advantage of avoid- 
ing the dangers of a hereditary disease: If this disease is recessive, as are most 
mutations, and if only one of the two parents has it, then the child's health is 
not affected by it. In other words, sexual reproduction as opposed to cloning 
allows for redundant information just like back-up diskettes. If an error gets into 
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the hard disk (female genome), the diskette (male genome) still has the correct 
information. Similarly, repeated proofreading [13] avoids more error than proof- 
reading just once. One of the main successes of the sexual Penna model was 
an explanation why females (as opposed to Pacific Salmon) survive menopause 
and why menopause exists at all for mammals [10]. It explained why men live 
shorter than women, opposite to the situation with birds [14]. The simulations 
also warn of future disappointments with medical care [15]. 

Sexual Penna model; b=8 no selection (top), b=4 no selection (bottom), b=4 with selection (middle) 
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Fig. 2. Initial simulation (top), population with half the birth rate to simulate sexual 
reproduction (bottom), and somewhat improved results if females select only healthy 
partners (middle). 

However, what about life-forms with two genomes but without sexual repro- 
duction (also known as meiotic parthenogenesis). The above arguments make in 
this case the transmission of genetic information as reliable as in the sexual case, 
while the men do not get pregnant and just eat the steaks and drink the port 
wine away from the mothers. Why do we men exist at all ? As protection against 
parasites [16] ? It helps little if after thousand generations the greater genetic 
variety allows better adjustment to an environmental catastrophe when during 
the waiting time at each generation meiotic parthenogenesis wins by a factor of 
two compared to sexual reproduction [10,17]. Figure 2 shows with the highest 
population the meiotic parthenogenesis; then for sexual reproduction the birth 
rate is reduced by a factor two to account for lazy men (lowest population), and 
finally, for the middle curve, we assume that females select only the healthier 
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males (less mutations) as sexual partners. We see from the figure that female 
selection may help, but not enough to overcome the loss of half the births. 

Thus, perhaps men are an error of nature: "When God created Adam, She 
was only trying out." 
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Abstract. Cellular automata provide an abstract model of parallel com- 
putation that can be effectively used for modeling and simulation of com- 
plex phenomena and systems. The design and implementation of parallel 
languages based on cellular automata provide useful tools for the devel- 
opment of scalable algorithms and applications in computational science. 
We discuss here the use of cellular automata programming models and 
tools for parallel implementation of real-life problems in computational 
science. Cellular parallel programming tools allow for the exploitation 
on the inherent parallelism of cellular automata in the efficient imple- 
mentation of natural solvers that simulate dynamical systems by a very 
large number of simple agents (cells) that interact locally. As a practi- 
cal example, the paper shows the design of parallel cellular programs by 
a language called CARPET and discusses other languages for parallel 
cellular programming. 
Keywords: cellular automata, programming languages, parallel and dis- 
tributed computing. 

1    Introduction 

Cellular automata (CA) offer a computational model that, because its simplicity 
and generality, has been utilized in many and disparate scientific, areas such as 
fluid dynamics, artificial life, image processing, parallel computing, biology, eco- 
nomics and data encryption. The use of cellular automata has been widened by 
their implementation on high-performance parallel architectures that allowed for 
their use on solving very complex problems. Several languages and tools have 
been developed for programming cellular automata on sequential and parallel 
machines. They can support and improve the design and implementation of com- 
plex applications and systems using the cellular automata paradigm. This paper 
presents and discusses cellular automata programming languages and models for 
parallel implementation of real-life problems in computational science. 

A cellular automaton consists of a lattice of cells, each of which is connected 
to a finite neighborhood of cells that arc nearby in the lattice [14]. Each cell in 
the regular spatial lattice can take any of a finite number of discrete state values. 
Time is discrete, as well, and at each time step all the cells in the lattice arc 
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updated by means of a local rule called transition function, which determines 
the cell's next state based upon the states of its neighbors. That is, the state of 
a cell at a given time depends only on its own state and the states of its nearby 
neighbors at the previous time step. Different lattice topologies (e.g., triangular, 
square, and hexagonal) and neighborhoods can be defined for an automaton. 

Cellular automata provide a global framework for the implementation of par- 
allel programs that represent natural solvers of dynamic complex phenomena and 
systems based on the use of discrete time, discrete space and a discrete set of 
state variable values. CA arc intrinsically parallel and they can be efficiently 
mapped onto parallel computers , because the communication flow between pro- 
cessors can be kept low. Inherent parallelism and restricted communication arc 
two key points for the efficient execution of CA on parallel computers. Applica- 
tions of CA arc very broad, ranging from the simulation of artificial life, physical, 
biological and chemical phenomena to the modeling of engineering problems in 
many fields such as road traffic, image processing, and science of materials. In the 
past 20 years there has been a significant increase of research activities concern- 
ing both theoretical aspects and practical implementations and use of cellular 
automata as a model for complex dynamics [16] [12]. 

In the cellular programming approach, a cellular algorithm consists of the 
transition function of cells that compose the CA lattice. The transition function 
of each cell is executed in parallel, thus the global state of the the entire automa- 
ton is updated at each iteration. For all the cells the same local rule is generally 
used (homogeneous cellular automata), but it is also possible to define some 
cells with different transition functions (inhomogcncov.s cellular automata). 

In general, traditional languages such as C, Pascal, C++ and Fortran arc 
used in sequential implementations of cellular automata simulations. When a 
parallel implementation is provided, these languages arc typically used together 
with parallel toolkits such as MPI and PVM. An alternative to this conservative 
approach is to use CA languages that can express directly in their constructs 
the definition of CA lattices and cellular algorithms. After the program writing, 
a compiler translates these CA rules into a simulation program. This approach 
has a programming advantage offering high-level CA operations and the same 
CA description could possibly also be compiled onto different computers. 

Our opinion is that it is necessary and very useful to develop high-level lan- 
guages and tools specifically designed to express the semantics of the cellular 
automata computational model. In particular, the design and implementation of 
parallel languages based on the cellular automata model provide high-level pro- 
gramming tools for the development of natural solvers in computational science, 
that is scalable algorithms and applications based on a nature-inspired model 
such as cellular automata. In the recent years several CA-bascd languages have 
been developed and used for designing computational science applications. This 
paper discusses the role these languages may play in the parallel scientific ap- 
plications arena. Furthermore, we show as a case study of this approach, the 
design of parallel cellular programs by the CARPET language and discuss other 
languages for parallel cellular programming such as CDL, Parcel-1, CANL, and 
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Ccllang. Because of space limits wc cannot describe in detail all the languages, 
therefore wc discuss their main fcattircs by discussing the paramount aspects of 
the parallel cellular programming languages class. 

The remainder of the paper is organized as follows. Section 2 introduces and 
discusses the main features of parallel cellular languages. Section 3 gives a brief 
description of the CARPET language and section 4 shows the use of CARPET 
for implementing scientific applications according to the cellular programming 
model; some figures arc presented to show performance scalability. Finally, sec- 
tion 5 draws some conclusions. 

2    Languages for Parallel Cellular Computing 

The aim of the paper is to discuss how cellular programming languages can 
support users in the implementation of computational science applications. This 
class of applications require the use of high-performance computers to get results 
in a reasonable amount of time. For this reason we restrict the discussion on 
cellular languages that arc have been implemented on parallel computers. 

For the implementation of CA on parallel computers two main approaches 
can be used. One is to write programs that encode the CA rules in a general- 
purpose parallel programming language such as HPF, HPC+-1-, Linda or CILK 
or still using a high-level sequential language like C, Fortran or Java with one of 
the low-level toolkits/libraries currently used to implement parallel applications 
such as MPI, PVM, or OpcnMP. This approach docs not require a parallel 
programmer to learn a new language syntax and programming techniques for 
cellular programming. However, it is not simple to be used by programmers that 
arc not experts in parallel programming and code consists of a large number 
of instructions even if simple cellular models must be implemented. The other 
possibility is to use a high-level language specifically designed for CA, in which 
it is possible to directly express the features and the rules of CA, and then 
use a compiler to translate the CA code into a program executable on parallel 
computers. This second approach has the advantage that it offers a programming 
paradigm that is very close to the CA abstract model and that the same CA 
description could possibly also be compiled into into different code for various 
parallel machines. Furthermore, in this approach parallelism is transparent from 
the user, so the programmers can concentrate on the specification of the model 
without worrying about architecture related issues. In summary, it leads to the 
writing of software that docs express in a natural way the cellular paradigm, thus 
programs arc more simple to read, change, and maintain. On the other hand, 
the regularity of computation and locality of communication allow CA programs 
to get good performance and scalabiltity on parallel architectures. 

Several CA programming languages such as Ccllang [3], CARPET [10], CDL 
[C], CANL [7], Parcel-1 [13], DEVS-C++ [18], and CEPROL [8], have been 
designed for parallel cellular computing" in the past years. These languages sup- 
port the definition of cellular algorithms and their execution on different classes 
of parallel computers. They have several shared features such as the common 
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computational paradigm and some differences such as, for example, different 
constructs to specify details of a cellular automaton or of mapping and output 
visualization [17]. Many real-world applications in science and engineering, such 
as lava-flow simulations, molecular gas simulation, landslide modeling, freeway 
traffic flow, 3-D rendering, soil biorcmediation, biochemical solution modeling, 
and forest fire simulation, have been implemented by using these CA languages. 
Moreover, parallel CA languages can be used to implement a more general class 
of fine grained applications such as finite elements methods, partial differential 
equations and systolic algorithms. 

Here wc discuss the main features of those languages. In particular, we outline 
the following aspects that influence the way in which CA applications can be 
developed on high performance architectures: 

1. programming approach, 
2. cellular lattice declaration, 

3. cell state definition and operations, 

4. neighborhood declaration and use, 

5. parallelism exploitation, 
6. cellular automata mapping, and 
7. output visualization, 

By discussing these concepts wc intend to illustrate how this class of languages 
can be effectively used to implement high-performance applications in science 
and engineering using the massively parallel cellular approach. 

2.1     Programming Approach 

When a programmer starts to design a parallel cellular program she/he must 
define the structure of the lattice that represents the abstract model of a com- 
putation in terms of cell-to-ccll interaction patterns. Then it must concentrate 
on the unit of computation that is a single cell of the automaton. The computa- 
tion that is to be performed must be specified as the evolution rule (transition 
function) of the cells that compose the lattice. Thus, differently form other ap- 
proaches, a user do not specify a global algorithm that contains the program 
structure in an explicit form. The global algorithm consists of all the transition 
functions of all cells that are executed in parallel for a certain number of itera- 
tions (steps). It is worth to notice that in some CA languages it is possible to 
define transistion functions that change in time and space to implement inhomo- 
geneous CA computations. Thus, after defining the dimension (e.g., 1-D, 2-D, 
3-D) and the size of the CA lattice, she/he needs to specify, by the conventional 
and the CA statements, the transition function of the CA that will be executed 
by all the cells. Then the global execution of the cellular program is performed as 
a massively parallel computation in which implicit communication occurs only 
among neighbor cells that access each other state. 
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2.2 Cellular Lattice Declaration 

As mentioned in the previous section, the lattice declaration defines the lattice 
dimension and the lattice size. Most languages support two-dimensional rect- 
angular lattices only (e.g., CANL and CDL). However, some of them, such as 
CARPET and Ccllang, allow the definition of 1-D, 2-D, and 3-D lattices. Some 
languages allow also the explicit definition of boundary conditions such as CANL 
[7] that allows adiabatic boundary conditions where absent neighbor cells arc as- 
sumed to have the same state as the center cell. Others implement reflecting 
conditions that arc based on mirroring the lattice at its borders. Most languages 
use standard boundary conditions such as fixed and toroidal conditions. 

2.3 Cell State 

The cell state contains the values of data on which the cellular program works. 
Thus the global state of an automaton is defined by the collection of the state 
values of all the cells. While low-level implementations of CA allow to define the 
cell state as a small number of bits (typically 8 or 16 bits), cellular languages 
such as CARPET, CANL, DEVS-C++ and CDL allows a user to define cell 
states as a record of typed variables as follows: 

cell = (direction :int ; 
speed    : float); 

where two substates arc declared for the cell state. According to this approach, 
the cell state can be composed of a set of sub-states that arc of integer, real, 
char or boolean type and in some case (e.g., CARPET) arrays of those basic 
types can also be used. Together with the constructs for cell state definition, CA 
languages define statements for state addressing and updating that address the 
sub-states by using their identifiers cell.direction. 

2.4 Neighborhood 

An important feature of CA languages that differentiate them from array-based 
languages and standard data-parallel languages is that that they do not use 
explicit array indexing. Thus, cells are addressed with a name or the name of 
the cells belonging to the neighborhood. In fact, the neighborhood concept is 
used in the CA setting to define interaction among cells in the lattice. In CA 
languages the neighborhood defines the set of cells whose state can be used in the 
evolution rule of the central cell. For example, if wc use a simple neighborhood 
composed of four cells wc can declare it as follows 

neigh cross = (up, down, left, right); 

and address the neighbor cell states by the ids used in the above declaration 
(e.g., down, speed, left .direction). The neighborhood abstraction is used to 
define the communication pattern among cells. It means that at each tipc step, 

-195- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

a cell send to and receive from the neighbor cells the state values. In this way 
implicit communication and synchronization arc realized in cellular computing. 
The neighbor mechanism is a concept similar to the region construct that is used 
in the ZPL language [2] where regions replace explicit array indexing making 
the programming of vector- or matrix-based computations simpler and more 
concise. Furthermore, this way of addressing the lattice elements (cells) does 
not require compilc-timc sophisticated analysis and complex run-time checks to 
detect communication patterns among elements. 

2.5 Parallelism Exploitation 

CA languages do not provide statements to express parallelism at the language 
level. It turns out that a user does not need to specify what portion of code must 
be executed in parallel. In fact, in parallel CA languages the unit of parallelism is 
a single cell and parallelism, like communication and synchronization, is implicit. 
This means that in principle the transaction function of every cell is executed 
in parallel with the transaction functions of the other cells. In practice, when 
coarse grained parallel machines arc used, the number of cells N is greater than 
the number of available processors P, so each processor executes a block of N/P 
cells that can be assigned to it using a domain decomposition approach. 

2.6 CA Mapping 

Like parallelism and communication, also data partitioning and proccss-to-proccssor 
mapping is implicit in CA languages. The mapping of cells (or blocks of them) 
onto the physical processors that compose a parallel machine is generally done 
by the run-time system of each particular language and the user usually inter- 
venes in selecting the number of processors or some other simple parameter. 
Some systems that run on MIMD computers use load balancing techniques that 
assign at run-time the execution of cell transition functions to processors that 
arc unloaded or use greedy mapping techniques that avoid some processor to 
become unloaded or free during the CA execution for a long period. Example of 
these techniques can be found in [15], [G] and [1]. 

2.7 Output Visualization and Monitoring 

A computational science application is not just an algorithm. Therefore it not 
sufficient to have a programming paradigm for implementing a complete appli- 
cation. It is also as much significant to dispose of environments and tools that 
help a user in all the phases of the application development and execution. Most 
of the CA languages we arc discussing here provide a development environment 
that allows a user not only to edit and compile the CA programs. They allow 
to monitor the program behavior during its execution on a parallel machine, by 
visualizing the output as composed of the states of all cells. This is done by dis- 
playing the numerical values or by associating colors to those values. Examples 
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of these parallel environments arc CAMEL for CARPET, PECANS for CANL, 
and DEVS for DEVS-C++. Some of these environments provide dynamical vi- 
sualization of simulations together with monitoring and tuning facilities. Users 
can interact with the CA environment to change values of cell states, simulation 
parameters and output visualization features. These facilities arc very helpful 
in the development of complex scientific applications and make possible to use 
those CA environments as real problem solving environments (PSEs) [4]. 

Here we addressed the most important aspects that concern the CA software 
development process from problem specification to execution and simulation tun- 
ing. In the next sections we use the CARPET language as a case-study language 
to describe in practice how cellular languages can support the development of 
computational science applications. 

3    CARPET: A high-level cellular language 

CARPET implements the main CA features in a high-level programming lan- 
guage to assists parallel cellular algorithms design without apparent parallelism 
[10]. In particular, CARPET has been used for programming cellular algorithms 
in the CAMEL (Cellular Automata cnvironMcnt for systEms ModcLing) parallel 
environment [1]. CAMEL provide a software environment designed to support 
the parallel execution of cellular algorithms, the visualization of the results, and 
the monitoring of the program execution. CARPET and CAMEL have been used 
for implementing high-performance simulations of lava flows, landslides, freeway 
traffic, and soil biorcmediation [11]. 

The execution of cellular algorithms is implemented by the parallel execution 
of the transition function of every cell according to the Single Program Multiple 
Data (SPMD) model. In this way CAMEL exploits the computing power of a 
highly parallel computer, hiding the architecture issues from a user. A CARPET 
user can design cellular programs describing the actions of many simple active 
elements (implemented by the cells) interacting locally. Then, the CAMEL sys- 
tem allows a user to observe the global complex evolution that arises from all 
the local interactions. 

According to the SPMD programming approach, a user must define by CAR- 
PET the transition function of a single cell of the system he wants to simulate, 
then the language run-time system executes transition function in parallel to 
update the state of each cell. The main features of CARPET arc the possibil- 
ity to describe the state of a cell as a record of typed substatcs each one by 
a user-defined type, and the simple definition of complex neighborhoods (e.g., 
hexagonal) that can be also time dependent in a n-dimensional discrete Carte- 
sian space. 

By CARPET, a variety of cellular algorithms can be designed in a simple 
but very expressive way. The language utilizes the control structures, the types, 
the operators and the expressions of the C language and it enhances the declara- 
tion part allowing the declaration of the features of a cellular automaton. These 
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arc the dimensions of the automaton (e.g., the declaration dimension 3; de- 
fines a three dimensional automaton), the radius (radius) of the neighborhood 
and the pattern of the neighborhood (neighbor). For example, a very simple 
neighborhood composed of four cells can be defined as follows: 

neighbor Stencil[4] '([-1,0]Left,   [1,0]Right,   [0,l]Up,   [0,-1]Down); 

As mentioned before, the state (state) of a cell is defined as a set of typed 
substates that can be shorts, integers, floats, char, and doubles or arrays of 
these basic types. In the following example, the state consists of three substates. 

state   (float  speedX,   speedY,   energy); 

The energy substatc of the current cell can be referenced by the prede- 
fined variable cell-energy. The neighbor declaration assigns a name to speci- 
fied neighboring cells of the current cell and allows such to refer to the value of 
the substates of these identified cells by their name (c.g.,Left_energy). Further- 
more, the name of a vector whose length is the number of elements composing the 
logic neighborhood it must be associated to the neighborhood (e.g., Stencil). 
The name of the vector can be used as an alias in referring to the neighbor cells. 
Through the vector, a substatc can be referred as Stencil [i] .energy where 
0 < i■< 4. 

To guarantee the semantics of cell updating in cellular automata the value of 
one substatc of a cell can be modified only by the update operation, for example 

update(cell_speedX,   13.4); 

After the execution of an update statement, the value of a substatc argument 
remains -unchanged in the current iteration. The new value takes effect at the 
beginning of next iteration. Furthermore, a set of global parameters (parameter) 
can be declared to define global characteristics of the system to be simulated 
(e.g., the permeability of a soil). Finally, CARPET allows users to define cells 
with different transition functions (inhomogencous CA) by means of thcGetX, 
GetY, GetZ functions that return the value of the coordinate X, Y, and Z of the 
cell in the automaton. By varying only a coordinate it is possible, for example, 
to associate the same transition function to all cells belonging to a plane in a 
three dimensional automaton. 

The language docs not provide statements to configure the automata, to 
visualize the cell values or to define data channels that can connect the cells 
according to different topologies. The configuration of a cellular automaton is 
defined by the graphical user interface (UI) of the CAMEL environment. The 
UI allows, by menu pops, to define the size of the cellular automata, the number 
of the processors onto which the automata must be executed, and to choose the 
colors to be assigned to the cell substates to support the graphical visualization 
of their values. The exclusion of constructs for configuration and data visualiza- 
tion from the language it allows to execute the same CARPET program using 
different configurations. Furthermore, it makes possible to change from time to 
time the size of the automaton and/or the number of the processors onto which 
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the automaton must be executed. Finally, this approach allows selecting the 
more suitable range of the colors for visualization of data. 

4    Practical examples of cellular programming 

In this section we describes two practical examples of cellular programming writ- 
ten using the CARPET language. The first example is a typical CA application 
that simulates excitable systems. The second program is the classical Jacobi re- 
laxation that shows how it is possible to use GA languages not only for simulate 
complex systems and artificial life models, but that they can be used to imple- 
ment parallel programs in the area of fine grained applications such as finite 
elements methods, partial differential equations and systolic algorithms that arc 
traditionally developed using array or data-parallel languages. 

4.1 The Greenberg-Hastings model 

A classical model of excitable media was introduced 1978 by Grccnbcrg and 
Hastings [5]. This model considers a two-dimensional square grid. The cells arc 
in one of a resting (0), refractory (1), or excited (2) state. Neighbors arc the 
eight nearest cells. A cell in the resting state with at least s excited neighbors 
(in the program we use s = 1) becomes excited itself, runs through all excited 
and resting states and returns finally to the resting state. A resting cell with less 
than .s excited neighbors stays in the resting state. 

Excitable media appear in several different situations. One example is nerve 
or muscle tissue, which can be in a resting state or in an excited state followed by 
a refractory (or recovering) state. This sequence appears for example in the heart 
muscle, where a wave of excitation travels through the heart at each heartbeat. 
Another example is a forest fire or an epidemic model where one looks at the 
cells as infectious, immune, or susceptible. 

Figure 1 shows the CARPET program that implements the two-dimensional 
Greenberg-Hastings model. It appears concise and simple because the program- 
ming level is very close to the model specification. If a Fortran+MPI or C+MPI 
solution is adopted the source code is extremely longer with respect to this one 
and, although it might be a little more efficient, it is very difficult to program, 
read and debug. 

4.2 The Jacobi relaxation 

As a second example, wc describe the four-point Jacobi relaxation on anxn 
lattice in which the value of each clement is to be replaced by the average value 
of its four neighbor elements. The Jacobi relaxation is an iterative algorithm 
that is used to solve differential equation systems. It can be used, for example, 
to compute the heat transfer in a metallic plate on which boundaries there is a 
given temperature. At each step of the relaxation the heat of each plate point 
(cell) is updated by computing the average of its four nearest neighbor points. 
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#define resting 0 
#define refractory 1 
#define excited 2 

cadef 

{ 
dimension 2; 
radius 1; 
state (short value); 
neighbor Moore[8]   ([0,-l]North,   [l,-i]NorthEast, [l,0]East, 

[l,l]SouthEast, [0,1]South, [-l,l]SouthWest, 
[-1,0]West,   [-1,-1]Northwest); 

> 
int i,  exc_neigh=0; 

{ 
for  (i=0;   (i<8)  kk  (exc_neigh==0);   i++) 

if (Moore [i].value == excited) exc_neigh = 1; 
switch (cell.value) 

{ 
case excited   : update(cell.value, recovering); break; 
case recovering : update(cell.value, resting); break; 
default       : /* cell is in the resting state */ 

if (exc_neigh ==1) 
update(cell.value, excited); 

} 
} 

Fig. 1. The Greenberg-Hastings model written in CARPET. 

Figure 2 shows a CARPET implementation. The initial if statement is used to 
set the initial values of cells that arc taken to be 0.Ü except for the western edge 
where boundary values arc 1.0. 

The Jacobi program, although it is a simple algorithm, is another example 
of how a CA language can be effectively used to implement scientific programs 
that arc not properly in the original area of cellular automata. This simple case 
illustrates the high-level features of the CA languages that can be also used for 
implement applications that arc based on the manipulation of arrays such as 
systolic algorithms and finite elements methods. 

For the Jacobi algorithm wc present some performance benchmarks that have 
been obtained by executing the CARPET program using different grid sizes and 
processor numbers. Table 1 shows the execution times for 100 relaxation steps 
for three different grid sizes (100x200, 200x200 and 200x400) on 1, 2, 4, 8 and 
10 processors of a QSW CS-2 multicomputer. From the figure wc can see that 
as the number of used processors increases, there is a corresponding decrease 
of the execution time. This trend is more evident when larger grids arc used; 
while smaller CA do not use efficiently the processors. This means that, because 
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cadef 

i 
dimension 2; 
radius 1; 
state ( float elem ); 
neighbor Neum[4]([0,-1]North,[-1,0]West,[0,1]South,[1,0]East); 

} 
int sum; 

{ 
if (step == 1 ) 

if (GetY == 1) 
update (cell.elem, 1.0); 

else 
update  (cell_elem,  0.0); 

else 
{ 

sum « North_elem+South_elem+East_elem+West_elem; 
update  (cell.elem,   sum/4); 

} 
} 

Fig. 2. The Jacobi iteration program written in CARPET. 

of the algorithm simplicity, when we run an automaton with a small number 
of cells we do not need to use several processing elements. On the contrary, 
when the number of cells in the lattice is high, the algorithm benefits from the 
use of a higher number of computing resources. This can be also deduced from 
table 2 that shows the relative speed up results for the three different grids. In 
particular, we can observe that when a 200x400 lattice of cells is used we obtain 
a supcrlincar speed up in comparison to the sequential execution mainly because 
of memory allocation and management problems that occur when all the 80,000 
cells arc allocated on one single processing clement. 

Table 1. Execution time (in sec.) of 100 iterations for the Jacobi algorithm 

Grid Sizes 1 Proc    I 2 Procs    I 4 Procs       8 Procs       10 Procs 

100x200 1.21 0.65 0.37 0.25 
200x200 3.62 1.25 0.67 0.42 0.37 
200x400 8.22 3.65 1.26 0.74 0.62 
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Table 2. Relative speed up of the Jacobi algorithm 

Grid Sizes    ||  1 Proc    | 2 Procs    | 4 Procs    | 8 Procs    |  10 Procs 

100x200 1 1.86 3.27 4.84 

200x200 1 2.89 5.40 8.62 9.78 
200x400 1 2.25 6.52 11.10 13.25 

5    Conclusions 

The primary function of programming languages and tools has always been to 
make the programmer more effective. Appropriate programming languages and 
tools may drastically reduce the costs for building new applications as well as 
for maintaining existing ones. It is well known that programming languages can 
greatly increase programmer productivity by allowing the programmer to write 
high-scalable, generic, readable and maintainable code. Also, new domain spe- 
cific languages, such as CA languages, can be used to enhance different aspects 
of software engineering. The development of these languages is itself a signifi- 
cant software engineering task, requiring a considerable investment of time and 
resources. Domain-specific languages have been used in various domains and the 
outcomes have clearly illustrated the advantages of domain specific-languages 
over general purpose languages in areas such as productivity, reliability, and 
flexibility. 

The main goal of the paper is answering the following question: How does 
one program cellular automata on parallel computers? Wc think that it is very 
important for an effective use of cellular automata for computational science 
on parallel architectures to develop and use high-level programming languages 
and tools that arc based on the cellular computation paradigm. These languages 
may provide a powerful instrument for scientists and engineers that need to 
implement real-life applications on parallel machines using a fine-grain approach. 
This approach allows designers to concentrate on "how to model a problem" 
rather than on architectural details as occurs when people use low-level languages 
that have not been specifically designed to express fine-grained parallel cellular 
computations. 

In a sense, parallel cellular languages provide a high-level paradigm for hue- 
grain computer modeling and simulation. While efforts in sequential computer 
languages design focused on how to express sequential objects and operations, 
here the focus is on finding out what parallel cellular objects and operations arc 
the ones wc should want to define [9]. Parallel cellular programming is emerging 
as a response to these needs. 

After discussing the main issues in programming scientific applications by 
means of parallel cellular languages, we discussed the CARPET language as an 
example in this class of languages. By CARPET we described the iniplcmcntion 
of two application examples that illustrate the main features of this approach. 
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Currently CARPET and the latest version of its run-time system named 
CAMELot {CAMEL open technology) arc used for the implementation of mod- 

els and simulation of complex phenomena and they arc available on parallel 
architectures and cluster computing systems that use Sun Solaris, SGI IRIX, 
Red Hat Linux and Tru64 UNIX 4.0F as operating systems. 
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Abstract. Numerical simulation of collision-free plasma is of great importance in 
the fields of space physics, solar and radio physics, and in confined plasmas used in 
nuclear fusion. This work describes a novel completely general and highly efficient 
algorithm for the numerical simulation of collision-free plasma. The algorithm is 
termed Vlasov Hybrid Simulation (VHS) and uses simulation particles to construct 
particle distribution function in the region of phase (r,v) space of interest. The 
algorithm is extremely efficient and far superior to the classic particle in cell 
method. A fully vectorised and parallelised VHS code has been developed, and has 
been successfully applied to the problem of the generation of VLF triggered 
emissions and VLF 'dawn chorus', due to the nonlinear interaction of cyclotron 
resonant electrons with narrow band VLF band waves (-kHz) in the earth's 
magnetosphere. 

1    Introduction 

The problem of the numerical simulation of plasma is one of great importance in the 
realms of both science and engineering. The physics of the solar corona is essentially that 
of a very hot collision free plasma. Plasma physics governs the behaviour of radio waves 
in the whole of the earth's near space region, usually termed the Magnetosphere'. Closer 
to home plasmas employed in nuclear fusion devices and industrial plasmas may well 
have time and spatial scales which make them effectively collision-free, and 
understanding their dynamics is of vital importance. 

The equations governing any collision free (CF) plasma physics problem are those of 
Maxwell and Liouville. Liouville's theorem states that the density of particles F(r,v) in 6 
dimensional phase space r,v is conserved following the trajectories of particles in phase 
space. Clearly plasma physics problems may be immensely complicated, particularly if 
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particle motion is non linear. Usually one must resort to numerical simulation to gain any 
comprehension of what is happening. 

Traditionally the methodology of choice for Collision Free plasma simulation was the 
classic particle-in-cell (PIC) method. The required spatial domain r or simulation box is 
covered by a suitable grid. A large number of simulation particles (SP's) are inserted into 
the simulation box and their trajectories followed according to the usual equations of 
motion. At each time step particle charge/currents are assigned or distributed to the 
immediately adjacent spatial grid points, thus giving the charge/current field in the box. 
Use of the discretised Maxwell's equations allows one to time advance or push' the 
electric and magnetic field vectors in the r domain. PIC codes however suffer from 
several disadvantages. They are noisy, make inefficient use of simulation particles, and 
do not properly resolve distribution function in phase space. For problems involving 
small amplitude waves where the perturbation in distribution function dF is relatively 
small (dF«Fo) they are particularly noisy and inefficient. 

2   The Vlasov Hybrid Simulation Method (VHS) 

A novel and highly efficient simulation method has been devised termed Vlasov Hybrid 
Simulation (VHS) [1]. The structure of the algorithm is as follows. A phase space (r,v) 
simulation box is first selected, to cover the domain of interest in the problem at hand. 
The maximum dimensionality of phase space is 6, but many realistic simulations have a 
reduced number of spatial or velocity space dimensions. The phase box may be a 
function of time as the simulation progresses. In the present case for example we are 
interested in electrons that are cyclotron resonant with the wave field and this phase box 
will cover the region of velocity space that is close to the resonance velocity. The box is 
filled with a grid to provide adequate resolution of distribution function in phase space. 
At the start of the simulation the phase box is evenly filled with particles at a density of 
about 1-2 per elementary grid cell. By Liouville's theorem distribution function F is 
conserved along phase trajectories. Each Simulation Particle (SP) is assigned a value of F 
appropriate to the initial conditions for the problem at hand. As the simulation progresses 
the SP trajectories in phase space are numerically integrated, in this case using a second 
order modified Euler algorithm. Thus the value of distribution function (F) is known at 
the points in phase space where the simulation particles happen to be located. Now at 
each time step the values of F at SP points are interpolated to the fixed phase space grid. 
This is achievable by a very simple procedure. The value of distribution function F1 at 
each Simulation Particle number 1 is distributed additively to adjacent grid points using 
the familiar area weighting coefficients 0Ci as employed in classical PIC codes. The 
weighting coefficients a, themselves are also distributed additively to adjacent grid 
points. For a specific grid point ijk we then have 
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F» = 
iF'a, 2> 

where the sum is over all simulation particles located in the 2" elementary hypercubes 
surrounding the grid point in question, where a phase space of dimensionality n has been 
assumed. This interpolation procedure lies at the heart of the VHS method and confers its 
many advantages. Once distribution function Fp is defined on a regular velocity space 
grid it is a simple matter to compute plasma current and charge fields in 3D cartesian 
space, by appropriate integration (summation) over the velocity space grid. Following 
this one may push the EM fields forwards in time using a discretised representation of 
Maxwell's equations. 

2.1 Particle control 

Fortunately from Liouville's theorem itself there is no tendency for SP's to bunch and 
leave grid points \mcovered'. Where this does occur a value for Fyk may be secured by 
interpolation from neighbouring grid points. At any time extra SP's may be inserted into 
(or removed from) the phase fluid-they only act as markers providing information about 
the value of distribution at a particular point. Unlike all other techniques the density of 
SP's is not a critical quantity. It only needs to remain at a value greater than ~1 per 
elementary phase space volume. For some problems, and this is particularly true in the 
present case, there will be a flux of phase fluid out of or into the simulation phase space 
box along its boundaries. Particles leaving the phase box are discarded as they convey 
information no longer required. Where phase fluid enters the box it is necessary to insert 
new SP's into the phase fluid at that point. This has to be done with some care in order to 
attain an acceptable density of simulation particles in the incoming phase fluid. It is the 
interpolation procedure that makes it legitimate and possible to do this. This is a very 
powerful feature of VHS. The population of simulation particles is dynamic and 
constantly changing. 

2.2 Advantages of VHS 

VHS has been found to be highly efficient and to have very low noise levels when 
compared to PIC codes. Very efficient use is made of the simulation particles, as they 
carry information as to the value of F (or rather dF). Unlike other Vlasov simulation 
techniques that have been developed the algorithm is very stable and robust. For example 
the standard method of Cheng and Knorr [2] aims to solve numerically the Vlasov 
equations in phase or configuration space. This requires the determination of the gradient 
of distribution function in phase space. This presents severe practical problems. In many 
plasma simulation problems particle distribution function acquires quite legitimately fine 
structure in phase space, often termed Tilamentation'. For example this may arise in wave 
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particle interaction problems in plasma when particles become phase trapped in a narrow 
band wave. Such filamentation makes the Cheng and Knorr algorithm numerically 
unstable against filamentation in velocity space. Attempts to resolve this problem involve 
techniques such as numerical smoothing, which corrupts the underlying physics being 
simulated. Another feature of VHS is that for certain problems,one may limit the region 
of phase space where F is resolved to a time varying simulation box.This is indeed the 
case in the present problem. The ability to accommodate a flux of phase fluid across the 
boundary of the phase box is unique to VHS and allows the particle population to be 
dynamic and to change constantly. In this way the particle population is confined to a set 
that is locally optimal in time. For example in the present problem particles are constantly 
drifting into and out of resonance with the wave. A PIC code would end up following 
large numbers of non resonant particles, but a VHS code will constantly discard non 
resonant particles and continually introduce new resonant particles. The benefits in 
computational time this confers cannot be over estimated. 

Another virtue of the VHS method is that distribution function is properly resolved in 
phase space and is available as a diagnostic output. Distribution function is only available 
from a PIC code by numerically inspecting the density of (weighted) simulation particles 
in velocity space. This is actually rarely done with PIC codes, and if it were one would 
quickly realise that the density of SP's was grossly inadequate to define F, let alone dF. It 
is a fact that PIC codes, particularly in applications with high dimensionality, often have 
inadequate numbers of simulation particles. The noise level is then extremely high, and 
the authors are relying on integration over time and over velocity space (in the evaluation 
of J (r) and p( r)) to reduce the noise to manageable levels. 

3   The application area. 

The VHS algorithm has been fruitfully applied here to a classic problem in space plasma 
physics. This is the generation mechanism of triggered emissions and chorus in the VLF 
band (3-30kHz) in the earth's magnetosphere. Triggered emissions are narrow band 
signals with sweeping frequency. Typically the frequency may rise or fall by several kHz 
in a time -1-2 sees. More complex spectral forms are often observed, such as downward 
hooks, upwards hooks, quasi constant tones and emissions whose frequency oscillates. 
Emissions are generated as a result of nonlinear cyclotron resonant interaction between 
the the EM wave and energetic radiation belt electrons of ~keV energy. Emissions 
achieve quite strong amplitudes of B-2-10pT, which represents a wave strong enough to 
nonlinearly 'trap'cyclotron resonant electrons. It is generally agreed that chorus and VLF 
emission arise in 'ducts' where the wave vector is closely parallel to the ambient magnetic 
field direction. A key aspect of the nonlinear wave particle interaction is the dominant 
role of the magnetic field inhomogeneity, which controls particle trapping dynamics and 
confines the interaction region to the equatorial zone. Consequently we have developed a 
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VHS/VLF code with 1 spatial dimension and 3 velocity dimensions to simulate this 
nonlinear self consistent interaction in the equatorial zone of the earth's magnetosphere. 
The region of generation is typically between 3 and 10 earth radii in altitude and some 
1000s of kms in extent, spread along equatorial magnetic field lines. This problem is 
extremely well suited to the VHS method-indeed this simulation has not been 
successfully achieved with any other type of simulation method, and PIC codes have 
shown themselves to be quite incapable of simulating this phenomenon. The phase box 
encloses the cyclotron resonance velocity Vres 

Vres = (co-n)/k 

where a> is wave frequency, Q. is electron gyrofrequency and k is wave number. Note that 
resonance velocity is in the opposite direction to wave phase and group velocities. The 
resonance velocity will vary in both space and time, through changing frequency of the 
emission, and significantly through inhomogeneity of the ambient magnetic field, which 
has a parabolic dependence on distance z from the equator. Thus particles are constantly 
entering the phase box, which is the region of resonance and thus of direct physical 
interest. It is thus guaranteed that all SP's are close to resonance. 

4   The VHS/VLF code. 

The code has been developed in Fortran77 and has been run on a wide variety of 
platforms, namely Origin2000, DEC Alpha cluster, Convex Exemplar, Cray YMP etc. 
The most numerically intensive procedures are the particle push routines, and the process 
of interpolating distribution function from particles to the fixed grid. The particle push 
routines fully vectorize, but the interpolation procedure does not due to its logical 
complexity. The whole code has been parallelised using MPI, which has been easily 
achieved by means of the following technique. The ID spatial domain is divided into M 
adjacent blocks, where M is the number of available processors. Each processor 
implements the particle push and interpolation procedures in its part of the spatial grid. 
At each step, those particles which physically move from one spatial domain to the next 
must be passed with their appertaining data between adjacent processors at the interface. 
The field push equations and certain global operations such as FFT/IFFT filtering of the 
EM wave fields are low work load operations and are performed by the master processor. 
All processors must pass current field data to the master at each timestep, where field 
push and field filtering are performed. The master then returns the new global EM wave 
fields to the 'slaves' who then perform the particle push and distribution function 
interpolation for the next timestep. 
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The simulation takes place within a finite frequency band located about a centre 
frequency which itself may be a function of time. The simulation bandwidth is ~ 70Hz 
which requires a spatial grid -1600 in order to resolve all Fourier components of the 
wave spectrum. The velocity space grid must be dense enough to resolve the structure of 
the distribution function in the region about the resonance velocity. The dominant 
structure is the so called resonant particle trap' and it was found that having 50 grid 
points in the Vz axis parallel to the Bo direction and 20 points in gyrophase gave 
adequate resolution. The total number of phase space grid points and thus the number of 
simulation particles is thus typically in the range 0.5-5 million. A short run may take 
only a few hours on an Origin2000. However run time scales as bandwidth cubed, so 
high bandwidth runs may take as long as a week. 

5. The observational data 

Radio emissions in the VLF (kHz) band, the so called VLF emissions, may occur 
spontaneously or be obviously triggered by some other signal. The first observations of 
triggered VLF emissions were obtained on the earth's surface on US Navy vessels. Morse 
code signals at 14kHz from the high power VLF transmitter NAA at Cutler, Maine were 
observed to trigger' long enduring radio emissions (~1 second) with a sweeping 
frequency ~2kHz/sec. [3]. In pioneering research it was realised by Helliwell [3] that 
these emissions must arise in the earth's magnetosphere and be due to non linear electron 
cyclotron resonance with radiation belt electrons with energies ~keV. Since that time 
triggered VLF emissions have been routinely observed on the ground, particularly at 
Halley Bay,Antarctica [4] and in Northern Scandinavia [5]. In the 1970's Stanford 
University established a horizontal VLF antenna in Antarctica at Siple station on the 
South Polar plateau. [6]. An extensive program of VLF transmissions were made to probe 
the magnetosphere and investigate the phenomenon of triggered emissions. One of the 
main objectives of the research program described here has been to develop the theory 
and numerical simulation tools to fully understand the many extraordinary phenomena 
observed in the Siple data base. 

Since triggered emissions are generated in space, it is not surprising that this phenomenon 
has also been observed on board scientific satellites. Unfortunately the VLF radio waves 
are confined to field aligned ducts caused by localised enhancements of plasma density. 
These ducts are ~100km in extent and it is only infrequently that a satellite will pass 
through a duct. Consequently satellite observations can be rather disappointing. However 
at large distances from the earth ,~10 earth radii, VLF signals are not ducted and satellites 
there record a variety of VLF chorus and triggered emissions. A recent paper by Nunn et 
al (1997) [7] presents VLF emission observations from the Geotail satellite and uses the 
VHS simulation code to produce almost exact replicas of emissions observed, using all 
the field and particle observations from on board the satellite. These results confirmed 
totally the plasma theory underlying this phenomenon. 
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6.  Numerical modelling of Siple triggered emissions 

Frequency/time plot of VLF emission 

Figl. 

The VHS/VLF code has been used to successfully simulate the triggering of a rising 
frequency emission triggered by a CW 70ms pulse at 3663Hz from the Siple transmitter. 
Figure 1 above displays a frequency-time contour plot of the output wavefield sequence 
as recorded at the end of the simulation box. The sweep rate of 1 kHz/s is in excellent 
agreement with observations on the ground and on board satellites. 

The emission itself is produced by a quasi static non linear self consistent and self 
maintaining structure termed a VLF soliton or generating region. This soliton is stable in 
nature, both in reality and in the simulation code. The profile of the riser soliton is shown 
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in figure 1. The code has completely elucidated the dynamical structure of the VLF 
soliton, and identified two distinct types, one associated with a riser and one with a faller. 

The code is also able to reproduce fallers with a suitable choice of initial parameters. 
Both downward and upward hooks may be produced by the code and these are 
interpretable in terms of transitions between the two soliton types. The sweeping 
frequency is due to the out of phase component of resonant particle current that sets up 
spatial gradients of wave number in the wave field and is able to sustain these. The top 
panel of figure 2 shows d/dz(Ji/|R|), where Ji is the out of phase component of resonant 
particle current and R the complex field. This quantity is the 'driver' that sets up the 
appropriate wave number gradients. 

Plot of d/dz(Ji/|R|) in Hz/s 

-3000 -2000 -1000 0 1000 

Plot of amplitude profile |R| in pT 

2000 

-3000 -2000 -1000 0 
z kms 

1000 2000 

Fig 2. 

Figure 3 shows the magnitude of the exit field received at the downstream end of the 
simulation box. Received amplitude rises rapidly to reach the saturation level, and 
remains there for a self sustaining emission. 
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Plot of exit amplitude in pT 
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Fig 3 

Frequency/time plot of VLF emission x10 
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Fig 4 

Figure 4 shows the simulation of a falling tone, which was obtained by increasing the 
ambient linear growth rate to 120dB/s, which has the effect of driving the wave profile 
upstream and turns the generation region into the structure of the faller type. Again the 
sweep rate of -1 kHz/s is in excellent agreement with observations. For this case fig 5 
shows a time snapshot of the wave profile |R| and also of the wave number shift driver 
d/dz(Ji/|R|). It is seen that the profile now extends further upstream. 

-213- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

1000 

500 

-500 

Plot of d/dz(Ji/|R|) in Hz/s 

-3000 -2000 -1000 0 1000 

Plot of amplitude profile |R| in pT 

2000 

5 z 1 1 1   _^   i   ^.^              i                          yv 

l- / ^-^x/X/x A / \ 
^4 r                                                      /                                 VV\      ■ 

/                                                    \ 
y 3 /                                                            i <U /                                                       \     / 
H? /                                                       \    f 1                                                         \    / 
Q. ^v      /^/\   /                                                         \  / 1-   1 /"\ X\ /             \ /                                                          \/" < 

'     •           >           '         ■ 1 1  

-3000 -2000 -1000 0 
z kms 

1000 2000 

Fig 5 

7    Conclusions 

The VHS method for numerical simulation of collision free plasma is low noise, highly 
efficient, very stable and provides excellent diagnostics. In this application the method 
has been successfully used to simulate triggered radio emissions in the VLF band in the 
earth's near space region. This is a complex and difficult problem which has never been 
solved using PIC codes. The VHS method far outperforms particle in cell codes in all 
applications where resolution of the distribution function in velocity space is required. 
The method is completely general and may be safely applied to ANY collision free 
plasma simulation problem. Problems with a high dimensionality will be expensive if 
tackled with a Vlasov VHS code. However use of a properly constituted Vlasov code 
guarantees accuracy and meaningful results. It is all too easy to run PIC codes with far 
too few particles, and to obtain results which although often plausible are in fact heavily 
corrupted by simulation noise. 
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Abstract. A first-principles program designed to compute, among other 
quantum-mechanical observables, the total energy of a given molecule, 
is efficiently parallelized using MPI as the underlying communication 
layer. The resulting program fully distributes CPU and memory among 
the available processes, making it possible to perform large-scale Monte- 
Carlo Simulated Annealing computations of very large molecules, ex- 
ceeding the limits usually attainable by similar programs. 

1    Introduction 

At present, an enormous effort is being dedicated to the study and fabrication of 
nano-structures and new materials, which calls for a framework to compute, from 
first-principles, and predict, whenever possible, properties associated with these 
types of systems. Among such frameworks, Density Functional Theory (DFT) 
constitutes one of the most promising. Indeed, the success of DFT to compute 
the ground-state of molecular and solid-state systems has been recognized in 
1998 with the award of the Nobel Prize of Chemistry to Walter Kohn and John 
Pople. DFT provides a computational framework with which the properties of 
molecules and solids can, in certain cases, be predicted within chemical accu- 
racy (= 1 Kcal/mol). Therefore, it is natural to try to use at profit the most 
recent computational paradigms in order to break new frontiers in these areas 
of research and development. 
In this work we report the successful parallelization of an ab-initio DFT pro- 
gram, which makes use of a Gaussian basis-set. This, as will become clear in the 
following section, is just one of the possible ways one may write down a DFT- 
code. It has, however, the advantage of allowing the computation of neutral and 
charged molecules at an equal footing, of making it possible to write the code 
in a modularized fashion (leading to an almost ideal load-balance), as well as it 
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is taylor-made to further exploit the recent developments of the so-called order- 
N techniques. As a result, the program enables us to carry out the structural 
optimization of large molecules via a Monte-Carlo Simulated Annealing strategy. 

Typically, the implementation of a molecular DFT-code using Gaussian, lo- 
calized, basis-states, scales as N%t, or N*t, depending on implementation, where 
Nat is the number of atoms of the molecule. Such a scaling constitutes one of the 
major bottlenecks for the application of these programs to large (> 50 atoms) 
molecules, without resorting to dedicated supercomputers. The fact that the 
present implementation is written in a modular fashion makes it simple and ef- 
ficient to distribute the load among the available pool of processes. All tasks 
so-distributed are performed locally in each process, and All data required to 
perform such tasks is also made available locally. Furthermore, the distribution of 
memory among the available processes is also done evenly, in a non-overlapping 
manner. In this way we optimize the performance of the code both for efficiency 
in CPU time as well as in memory requirements, which allows us to extend the 
range of applicability of this technique. 
This paper is organized as follows: In Section II a brief summary of the un- 
derlying theoretical methods and models, as applied to molecules, is presented, 
in order to set the framework and illustrate the problems to overcome. In Sec- 
tion III the numerical implementation and strategy of parallelization is discussed, 
whereas in Section IV the results of applying the present program to the struc- 
tural optimization of large molecules using Simulated Annealing are presented 
and compared to other available results. Finally, the main conclusions and future 
prospects are left to Section V. 

2    Molecular Simulations with DFT 

In the usual Born-Oppenheimer Approximation (BOA) the configuration of a 
molecule is defined by the positions Ri of all the Nat atoms of the molecule and 
by their respective atomic number (nuclear charge). The energy of the electronic 
ground state of the molecule is a function EGS{RI, ■ ■ ■, R-Nat) of those nuclear 
positions. One of the objectives of quantum chemistry is to be able to calcu- 
late relevant parts of that function, as the determination of the full function is 
exceedingly difficult for all except the simplest molecules. In practice one may 
try to find the equilibrium configuration of the molecule, given by the minimum 
of Eos, or one may try to do a statistical sampling of the surface at a given 
temperature T. That statistical sampling can be done by Molecular Dynamics 
(MD) or by Monte-Carlo (MC) methods. By combining the statistical sam- 
pling at a given T with a simulation process in which one begins at a high T 
and, after equilibrating the molecule, starts reducing the T in small steps, always 
equilibrating the molecule before changing T, one realizes an efficient algorithm 
for the global minimization of EQS, the so-called Simulated Annealing Method 
(SAM). 

The calculation of EQS for a single configuration is a difficult task, as it 
requires the solution of an interacting many-electron quantum problem. In Kohn- 
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Sham DFT this is accomplished by minimizing a functional of the independent 
electron orbitals i>i{r), 

EGS(Ri, • • •,RNat) = minEKS{Ri,...,RNat; V>i, • • -,^el) (1) 

where Nei is the number of electrons of the molecule, and the minimization is 
done under the constraint that the orbitals remain orthonormal, 

/ 
j,i(r)rl>j(r)<Pr = 8ij. (2) 

The Euler-Lagrange equation associated with the minimization of the Kohn- 
Sham functional is similar to a one particle Schrodinger equation 

+ 2 

-7T- vVi(r) +veS(r;ip1,...,tpn)tpi(r) = uipi{r), (3) 
Am 

except for the non-linear dependence of the effective potential ves on the or- 
bitals. As our objective here is to discuss the numerical implementation of our 
algorithms, we will not discuss the explicit form of veg and the many approxi- 
mations devised for its practical calculation, and just assume one can calculate 
veff given the electron wavefunctions tpi(r). The reader can find the details on 
how to calculate veff in excellent reviews, e. g., refs.[l,2] and references therein. 

If one expands the orbitals in a finite basis-set, 

M 

3 

then our problem is reduced to the minimization of a function of the coefficients, 

EGS(RI ;■■■, RN0, ) » min EKS(Ri,..., RNat; cn,..., cNelM) (5) 

and the Euler-Lagrange equation becomes a matrix equation of the form 

^2Cij[Hkj - eiSkj] = 0 (6) 
3 

where the eigenvalues are obtained, as usual, by solving the secular equation 

det\Hij-ESij\=0. (7) 

The choice of the basis-set is not unique[3]. One of the most popular basis-sets 
uses Gaussian basis-functions 

<Pi(r) = tyexpf-a^r - Rtf)^^ _ R.) (8) 

where the angular funtions Z™ are chosen to be real solid harmonics, and TV, are 
normalization factors. These functions are centered in a nucleus R{ and are an 
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example of localized basis-sets. This is an important aspect of the method, since 
this implies that the matrix-elements Hij result, each of them, from the contribu- 
tion of a large summation of three-dimensional integrals involving basis-functions 
centered at different points in space. This multicenter topology involved in the 
computation of H^ ultimately determines the scaling of the program as a func- 
tion of Nat. Finally, one should note that, for the computation of Hij one needs 
to know ueff which in turn requires knowledge of ipi(r). As usual the solution is 
obtained via a self-consistent iterative scheme, as illustrated in fig.l . 

Due to the computational costs of calculating EQS from first principles, for 
a long time the statistical sampling of EQS has been restricted to empirical or 
simplified representations of that function. In a seminal paper, Car and Par- 
rinello[4] (CP) proposed a method that was so efficient that one could for the 
first time perform first-principles molecular dynamics simulations. Their key idea 
was to use molecular dynamics, not only to sample the atomic positions but also 
to minimize in practice the Kohn-Sham functional. Furthermore they used an 
efficient manipulation of the wave-functions in a plane-wave basis-set to speed 
up their calculations. Although nothing in the CP method is specific to a given 
type of basis-set, the truth is that the overwhelming number of CP simulations 
use a plane-wave basis-set, to the point that most people would automatically 
assume that a CP simulation would use a plane wave basis-set. 

Although one can use plane-waves to calculate molecular properties with a 
super-cell method, most quantum chemists prefer the use of gaussian basis-sets. 
What we present here is an efficient parallel implementation of a method where 
the statistical sampling of the atomic positions is done with MC and the Kohn- 
Sham functional is directly minimized in a gaussian basis-set. 

3    Numerical implementation 

3.1     Construction of the matrix 

Each matrix-element Hij has many terms, which are usually classified by the 
number of different centers involved in its computation. The time and memory 
consuming terms are those associated with three center integrals used for the 
calculation of the effective potential veg. For the sake of simplicity we will assume 
that the effective potential is described also as a linear combination of functions 
9k(r), 

L 

Veff(r, {ipi}) = J2 fk{{cij}) 9k(r), (9) 
k=l 

where the coeficients fk have a dependence on the wavefunction coefficients, 
and gk are atom centered gaussian functions. Actually, in the program only the 
exchange and correlation term of the effective potential is expanded this way, 
but the strategy of parallelization for all other contributions is exactly the same, 
and so we will not describe in detail the other terms. 
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START 

educated guess for p(r) ir- 
compute potential 

▼ 
END 

eigenvalues & eigenfunctions 
of 

Kohn-Sham equations 

* 
(YES!        t   NO  I 

compute new p(r) 

* 

Comoarewith Dir) on entry anv change? 

Fig. 1. self-consistent iterative scheme for solving the Kohn-Sham equations. One starts 
from an educated guess for the initial density which, in DFT, can be written in terms 
of the eigenfunctions of the Kohn-Sham equations as p(r) = ^\ |t/>i(r)|2. After several 
iterations one arrives at a density which does not change any more upon iteration. 
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The contribution of the effective potential to the hamiltonian Hij is 

Vij = [ Ur)ves(r,{^i})4>j(r)d3r = £/*({««}) I<t>i{r)9k{r)<pj{r)d3r 
J fc=i J 

L 

= E^(^»^- (10) 
fc=i 

where the integral Aikj = f 4>i(r)gk(r)<pj(r)d3r involves three gaussian func- 
tions, and can .be calculated analytically. Furthermore all dependence on wave- 
function coefficients is now in the coefficients fk of the potential, and the integrals 
Aikj are all the same in the self-consistent iterations. This means that all the 
iterative procedure illustrated in fig. 1 amounts now to recombine repeatedly the 
same integrals, but with different coefficients at different iterations throughout 
the self-consistent procedure. 

We can now appreciate the two computational bottlenecks of a gaussian 
program. As the indexes i,j and k can reach to several hundred the size of the 
three-index array Aikj requires a huge amount of memory. Although analytical, 
the calculation of each of the Aikj is non-trivial and requires a reasonable number 
of floating point operations. The summation in eq. 10 has to be repeated for each 
of the self-consistent iterations. 

So far, no parallelization has been attempted. We now use at profit the 
modular structure of the program in order to distribute tasks among the available 
processes in an even and non-overlapping way. In keeping with this discussion, 
we recast each matrix-element Vij in the form 

N, proc 

Vj = ^ Vij[X) (11) 

where the indexed Vij [A] will be evenly distributed among the Npvoc processes 
executing the program, that is, it will be null except in one of the processes. 
Similarly, the three-index array Aikj is distributed as 

JVproc 

Aikj = Y^ Aikj\X} (12) 

in such a way that ^4^j[A] is null if Vij [A] is null. Of course, the null elements 
are not stored so the large array is distributed among all the processes, which 
for a distributed memory machine means that Aikj is distributed among all the 
processes. As 

L 

Vijl\} = Y,fk({cij})Aikj{\} (13) 

there is no need to exchange the values of Aikj among processes, but only those 
of fk before summation, and Vij [A] after the summation. So the calculation of 
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Aikj is distributed among the processes, the storage is also distributed, and A,kj 
never appears in the communications. 

Finally, and due to the iterative nature of the self-consistent method, the 
code decides - a priori - which process will be responsible for the computation 
of a given contribution to Vjj[A]. This allocation is kept unchanged throughout 
an entire self-consistent procedure. 

3.2    Eigenvalue problem 

For Nat atoms and, assuming that we take a basis-set of M gaussian functions 
per atom, our eigenvalue problem, eqs. 6 and 7, will involve a matrix of dimension 
(Nat x M). Typical numbers for an atomic cluster made out of 20 sodium atoms 
would be Nat = 20 and M = 7. This is a pretty small dimension for a matrix to 
be diagonalized, so the CPU effort is not associated with the eigenvalue problem 
but, mostly, with the construction of the matrix-elements Hij. We have not 
yet parallelized this part of the code. Its paralellization, poses no conceptual 
difficulty, since this problem is taylor made to be dealt with by existing parallel 
packages, such as SCALAPACK. As this part of the code is the most CPU time 
consuming among the non-paralelized parts of the code, it is our next target for 
parallelization. 

3.3    Monte-Carlo iterations 

Once UGS(ÄI,.. .,jRjvnt) *s obtained for a given molecular configuration, the 
Monte-Carlo Simulated Annealing algorithm "decides" upon the next move. As 
stated before, this procedure will be repeated many thousands of times before an 
annealed struture is obtained, hopefully corresponding to the global minimum 
of EGs- 
When moving from one MC iteration to the next, the Simulated Annealing 
algorithms typically change the coordinates of one single atom Ra —> Ra + SR. 
As the basis set is localized, each of the indices in A^k is associated with a given 
atom. If none of the indices is associated with the atom Ra, than Aijk does not 
change, and therefore is not recalculated. In this way, only a fraction of the order 
of l/iVat of the total number of integrals Aijk needs to be recalculated, leading 
to a substantial saving in computer time, in particular for the larger systems ! 
Furthermore, the "educated guess" illustrated in fig. 1, used to start the self- 
consistent cycle is taken, for MC iteration n + 1, as the self-consistent density 
obtained from iteration n. In this way, in all but the start-up MC iteration, the 
number of iterations required to attain self-consistency becomes small. It is this 
coupling between the Monte-Carlo and DFT parts of the code that allow us to 
have a highly efficient code which enables us to run simulations in which the 
self-consistent energy of a large cluster needs to be computed many thounsands 
of times (see below). 
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4    Results and discussion 

The program has been written in FORTRAN 77 and we use MPI as the underly- 
ing communication layer, although a PVM translation would pose no conceptual 
problems. Details of the DFT part of the program in its non-parallel version have 
been described previously ref[6]. The MC method and the SAM algorithm are 
well-described in many excellent textbooks[7]. 

The Hardware architecture in which all results presented here have been ob- 
tained is assembled as a farm of 22 DEC 500/500 workstations. The nodes are 
connected via a fast-ethernet switch, in such a way that all nodes reside in the 
same virtual (and private) fast-ethernet network. In what concerns Software, the 
22 workstations are running Digital Unix version 4.0-d, the DEC Fortran com- 
piler together with DXML-libraries, and the communication layer is provided by 
the free MPICH[8] distribution, version 1.1. Nevertheless, we would like to point 
out that the same program has been tested successfully on a PC, a dual-Pentium 
11-300, running Linux-SMP, g77-Fortran and LAM-MPI[9] version 6.2b. 

We started to test the code by choosing a non-trivial molecule for which 
results exist, obtained with other programs and using algorithms different from 
the SAM. Therefore, we considered an atomic cluster made out of eight sodium 
atoms - Na%. Previous DFT calculations indicate that a D^d structure - left 
panel of fig. 3 - corresponds to the global minimum of .EGS[6]. 

Making use of our program, we have reproduced this result without difficulties. 
Indeed, we performed several SAM runs starting from different choices for the 
initial structure, and the minimum value obtained for EQS corresponded, indeed, 
to the D2d structure. One should note that one SAM run for Nag involves the 
determination of Eos up to 2,2 104 times. Typically, we have used 1000 MC- 
iterations at a given fixed-temperature T in a single SAM run. This number, 
which is reasonable for the smaller clusters, becomes too small for the larger, 
whenever one wants to carefully sample the phase-space associated with the 
{Ri,..., RNat} coordinates. 

As shown in the right panel of fig. 2, Nag was our second choice. This is a nine 
atom sodium cluster to which one electron has been removed. As is well known[5] 
this cluster, together with Na8, constitute so-called magic clusters, in the sense 
that they display an abnormally large stability as compared to their neighbours 
in size[10]. When compared with quantum-chemistry results, the DFT structures 
are different, both for Na$ and Nag. This is not surprising, since the underlying 
theoretical methods and the minimization strategies utilized are also different, at 
the same time that the hyper-surface corresponding to Ecs{{Ri}) is verv shallow 
in the neighbourhood of the minima, irrespective of the method. Nevertheless, 
recent experimental evidence seem to support the DFT results[10]. 

In order to test the performance of the parallelization, we chose Nag and 
carried out two different kinds of benchmarks. First we executed the program 
performing 1 iteration - the start-up iteration - for Nag and measured the CPU 
time TCPU as a function of the number of processes iVpRoc- For the basis-set 
used, the number of computed Aikj elements is, in this case 3321. As can be 
seen from eq. 13, the ratio of computation to communications is proportional to 

■224- 



VECPAR '2000 - 4 th International Meeting on Vector and Parallel Processing 

Fig. 2. global minimum of EGS for the two magic sodium clusters Nas and JVajJ". 
For the determination of such global minima a SAM algorithm has been employed, 
requiring many thousands of first-principles computations of EGS to be carried out. 

the number of fit functions L. By choosing a small molecule where L is small 
we are showing an unfavorable case, where the parallelization gains are small, 
so we can discuss the limits of our method. In fig. 3 we plot, with a solid line, 
the inverse of the CPU time as a function of iVpRoc • 

Our second benchmark calculation involves the computation of 100 MC- 
iterations. For direct comparison within the same scale, we multiplied the inverse 
of TCPU by the number of iterations. The resulting curve is drawn with a dashed 
line in fig. 3. 

Several features can be inferred from a direct comparison of the 2 curves. First 
of all, there is an ideal number ./VPROC into which the run should be distributed. 
Indeed, fig. 3 shows that efficiency may actually drop as iVpRoc is increased. For 
this particular system, iVpRoc = 8 is the ideal number. This "node-saturation" 
which takes place here for TVaJ is related to the fact that the time per iteration is 
small enough for one to be able to observe the overhead in communications due 
to the large number of nodes in which the run is distributed. When the number 
of atoms increases, this overhead becomes comparatively smaller and ceases to 
produce such a visible impact on the overall benchmarks. From fig. 3 one can 
also observe that, for small -/VPR.oc , the largest gain of efficiency is obtained for 
the 1-iteration curve. This is so because that is where the parallelization plays a 
big role. Indeed, as stated in section 3, the number of floating point operations 
which are actually performed in the subsequent MC-iterations is considerably 
reduced, compared to those carried out during the start-up iteration. As a result, 
the relative gain of efficiency as iVpRoc increases becomes smaller in this case. 
However, since both CPU and memory are distributed, it may prove convenient 
to distribute a given run, even if the gain is not overwhelming. 
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Fig. 3. Dependence of inverse CPU time (multiplied by the number of MC-iterations) 
as a function of the number of processes (in our case, also dedicated processors) for two 
benchmark calculations (see main text for details). A direct comparison of the curves 
illustrates what has been parallelized in the code and where the parallelization plays 
its major role. 
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The solid curve of fig. 3 is well fitted by the function 0,25 - 0,17/7Vproc up to 
-Nproc = 8 which reveals that a good level of parallelization has been obtained. 
This is particularly true if we consider that the sequential code has 14200 lines, 
and is very complex, combining many different numerical algorithms. 

Finally, we would like to remark that, at present, memory requirements seem 
to put the strongest restrictions on the use of the code. This is so because of 
the peculiar behaviour of MPICH which creates, for each process, a "clone- 
listener" of each original process, that requires the same amount of memory as 
the original processes. This is unfortunate since it imposes, for big molecules, to 
set up a very large amount of swap space on the disk in order to enable MPI to 
operate successfully. In our opinion, this is a clear limitation. We are, at present, 
working on alternative ways to overcome such problems. 

In fig. 4 we show our most recent results in the search for global minima 
of sodium clusters. The structures displayed in fig. 4 have now 21 (left panel) 
and 41 (right panel) sodium atoms. A total of 17955 matrix-elements is required 
to compute each iteration of the self-consistent procedure for Na^i whereas for 
Na^j the corresponding number is 68265. The structures shown in fig. 4 illustrate 
the possibilities of the code, which are, at present limited by swap limitations 
exclusively. Of course, the CPU time for these simulations is much bigger than 
for the smaller clusters discussed previously. In this sense, the structure shown 
for Nali cannot be considered unambiguosly converged, in the sense that more 
SAM runs need to be executed. On the other hand, we believe the structure 
depicted for Na^ to be fully converged. Since no direct experimental data for 
these structures exists, only indirect evidence can support or rule out such struc- 
tural optimizations. The available experimental data[10] indirectly supports this 
structure since, from the experimental location of the main peaks of the photo- 
absorption spectrum of such a cluster one may infer the principal-axes ratio of 
the cluster, in agreement with the prediction of fig. 4. 

5    Conclusions and future applications 

In summary, we have suceeded in parallelizing a DFT code which efficiently 
computes the total energy of a large molecule. We have managed to parallelize the 
most time and memory consuming parts of the program, except, as mentioned 
in section 3.2, the diagonalization block, which remains to be done. This is 
good enough for a small farm of workstations, but not for a massive parallel 
computer. We should point out that it is almost trivial to parallelize the Monte- 
Carlo algorithm. In fact as a SAM is repeated starting from different initial 
configurations, one just has to run several jobs simultaneously, each in its group 
of processors. However, this will not have the advantages of distributing the 
large matrix A^. As storage is critical for larger molecules, parallelizing the 
DFT part of the code may be advantageous even when the gains in CPU time 
do not look promising. 
The code is best suited for use in combination with MC-type of simulations, 
since we have shown that, under such circumstances, not only the results of a 
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Fig. 4. Global minima for two large singly ionized sodium clusters with 21 atoms (left 
panel) and 41 atoms (right panel). Whereas the structure of Na^ can be considered 
as "converged", the same cannot be unambiguously stated for the structure shown for 
iVaJ[. For this largest cluster, the structure displayed shows our best result so-far, 
although further SAM runs need to be carried out. 

given iteration provide an excellent starting point for the following iteration, 
but also the amount of computation necessary to compute the total energy at 
a given iteration has been worked out, to a large extent, in the previuous it- 
eration. Preliminary results illustrate the feasibility of running first-principles, 
large-scale SAM simulations of big molecules, without resorting to dedicated 
supercomputers. Work along these lines is under way. 
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Abstract. In this paper we show how to construct parallel explicit mul- 
tistep algorithms for an accurate and efficient numerical integration of 
the radial Schrödinger equation. The proposed methods are adapted to 
Bessel functions, that is to say, they integrate exactly any linear combi- 
nation of Bessel and Newman functions and ordinary polynomials. They 
are the first of the like methods that can achieve any order. The coeffi- 
cients of the method are computed in each step. We show how the parallel 
implementation of the method is the key of an efficient computation. 

Corresponding author: J. Vigo-Aguiar 

1    Introduction. 

The behavior of a spinless quantum particle of mass m in a potential v(X), 
A" = (x1.x2.x3) is governed by the three-dimensional Schrödinger equation 

^-Ay(X) + (v(X)-e)y(X) = 0 (1) 

where A is the Laplace operator, h is the reduced Planck's constant and e is 
the particle energy. The solution y(X) can be expanded on the complete set of 
spherical functions }/.,„ 

viX) = \Y1Yty,{x)Yl,m(9,p) (2) 
/=o »77=-; 

where x.p.Q are the spherical coordinates of the point x. Introducing this ex- 
pansion in the equation and operating, we find that yi(x) satisfies 

y'l'(x) = (U(x)-P(x))yl(x), (3) 
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where 

k
2=2-^e     P{x) = k*-1M+}1 (4) 

h2 xl 

and U(x) is a given potential. The solution of the equation must vanish at 
the origin, i.e. one boundary condition is j//(0) = 0, and the other boundary 
condition, which depends on the physical model, is imposed at large x. 

Equation (3) is usually know as radial Schrödinger equation. And the problem 
of integrating (1) has been transformed to the integration of a infinite set of 
second order differential equations. Then it is obvious that we need methods 
with small CPU times. The use of parallel procedures and adequate multistep 
methods allow fast and accurate integration. 

In the computation of the eigenvalues or the phase shifts of the radial Schrödinger 
equation, usually the potential U{x) tends to zero much faster than the centrifu- 
gal potential k2 - P(x) = I {I + l)/x2 and then the solution of (3) may be taken 
as 

y(x) = cteikxji(kx) + cts^kxrii {kx) (5) 

where ji(x) and nj(a-) are respectively the Spherical Bessel and Neumann func- 
tions. It is our intention to develop a method that integrates exactly any linear 
combination of this functions and ordinary polynomials. This property is known 
as Bessel fitting or adaptation to Bessel functions. The theory and a procedure 
to construct adapted multistep methods to trigonometric and exponential func- 
tions is nowadays solved and can be found in [8]. Theory and procedure for 
adaptation to other types of dynamic behavior is still an open question. 

The difficulty of construction of methods adapted to Bessel functions is evi- 
denced by the fact that there exist only a few satisfactory papers on the subject 
(see for example, Raptis and Cash [3] and Simos and Raptis [5] ) The methods 
of Raptis and Cash produce accurate solutions in the phase shift problem that 
they proposed in spite of being second and fourth order methods. However in 
their methods the coefficients depend on the point where we are calculating the 
solution and so they must be recalculated at every step, with high computational 
cost. This is the point where parallel implementation is fundamental. It is our 
goal to formulate higher order Bessel fitting methods with the possibility that 
the coefficients can be computed at the beginning of the program in parallel, 
thus allowing a significant reduction in the computational cost. 

2    Bessel and Neumann fitting methods. 

To construct our procedure let us consider the differential equation 

y"+P(x)y = f(x,y) (6) 

Our first observation is that the sequence yn = cte.\k n hji(nh)+cteok n hni(nh) 
is the solution of the difference equation 

yn+i +di{x„+i,Xr,-i,h)y„ + di{x„+1.xn, h)y„-\ =0 
i/o = 0 (7) 
2/i = cte\k hji(h) + cteok hni(h) 
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where 

d[(a.b,h) 

kaji(ka) kbji(kb) 
kani(ka) kbni{kb) 

k{a - h)ji(a - h) k{a - 2h)j,(a - 2h) 
k(a - h)ni(a - h) k(a - 2/i)n/(a - 2h) 

(8) 

(9) 

and ||  || denotes the determinant. 
Then the problem 

y" + P(x)y = 0 

is integrated exactly with the proposed difference equation. 
The construction of the discretization scheme is completed with the treat- 

ment of the right-hand side f{x,y) in (6). In the theory of classical multistep 
methods, f(x,y) is approximated by a interpolator}- polynomial in the previous 
steps. The same proceeding is done here. The expression of the Bessel fitted 
method applied to (6) is: 

k 

j/n+i + di(x„+i,x„-i,h)y„ + di(xn+i,xn,h)yn-i = h2 ^a,-f{x.n+\-i,yn+i-i) 
i=0 

(10) 
We impose that the method integrates exactly the interpolation polynomial 

of f(x, y) requiring the method to be exact when we integrate the equations 

y"{x) + P{x)y = P{x)xm + m(m - l)xr 
(11) 

for 77! = 0,1, ••■,k. With this condition we obtain the nonsingular system of 
linear equations for a,-: 

Aa = Q (12) 

where A is 

1 

Xn + l 
2q(x„+i) + xl+1 2q(xn) + x,- 

\k(k - l)xk„l\q(x„+i) + xk
n+1 k{k - l)x*-2q{xn) + 4 • • • *(* - l)q{xn-k)xk

n_Tk + xk
n_k j 

1 

2q(xn-k) + xn-k 

„*'-2    ,   ^A- 

and 

Q = 

/ h2P(xn+1)a0\ 
h2P{xn+i)aj 

\h2P(x1l+l)aJ 

Q = 

\lkj 

where q(x) = p(Xy 

qi = x'n+1 +di{xn+l.xn-1.,h)x'n + di(xn+i:xn. /i)^,.-,. 

(13) 

(14) 

(15) 
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The solution of this system of equations can be done for 0 < k < 10 with the 
help of a symbolic manipulator. The resulting scheme will be named PSBF (Par- 
allel Spherical Bessel Fitted method) in the following. Note that the coefficients 
Q are recalculated once in each step. That is a characteristic of all the methods 
that integrate exactly linear differential equations without constant coefficients. 

Our method is an implicit method, in the same way we could have deduced 
an explicit method. However when we apply our method to equation (3) we can 
obtain an explicit procedure: 

j/n+i = rr, r{di{xn+i.xn-i,h)yn + d,{xn+i,xn,h)yu-i 

* (16) 
■/l2^Q,T(ln+l-i)!/n+l- 

!=1 

Given the good properties of stability of the implicit methods we have con-, 
sidered unnecessary to use an explicit method. 

3    Parallel Implementation and Properties. 

We will give a brief explanation of the convergence of the method (detailed proofs 
will appear in a different paper). 

Theorem The multistep method PSBF of k + 1 steps is consistent of order 
k + 1. Its local truncation error can be expressed as 

Cp(y, h)(x) = hk+3ak+1P(D)y(x) + 0(hk+4) (17) 

where P(D)y(x) is certain combination of y(x) and its derivatives. The method 
integrates without local truncation error the problems (3) whose solution belongs 
to the space generated by the linear combinations of 

1, x, x2, ■■-,xkp, xji(x),xni(x) (18) 

Observe that this method reduces to the classical Cowell method (Henrici 
1962) when P(x) — 0. For k = 2 the methods reduces to the popular Numerov 
method. 

What makes the method different from standard methods is that the co- 
efficients are recalculated in each step. This fact produces an increase in the 
computational cost, however this cost is minimized if we use the parallel imple- 
mentation proposed in this paper. 

We observe that once the grid has been selected the coefficients Qj. d\. and 
do-, can be calculated independently at each point xn. Then at the beginning of 
the program we compute in parallel these coefficients for all the points x„ of the 
grid. In the same way we compute all the values of the potential at each point 
at the beginning of the program. We have called this phase initialization phase. 
The following diagram explains the idea (see Table 1). 
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Table 1. Diagram for the initialization. Order of the method k, number of total steps 
in the integration m n 

Processor 1 Processor m 

di,d,2 d\, d-i 

Ql • • • ttfc Ql • • -Qj. 

at the points Xi ■ ■ ■ xn at the points X(n. -llm+l ' ' Xnrn 

Table 2 shows the execution time of this initial processes for a method of 
order k = 6. and total number of steps 296. We integrate a single equation and a 
system of dimension 80 (Z = 0 • ■ • 79). We show how the speed-up is close to the 
the number of processors. When we are using a scheme with constant coefficients 
the CPU time of the initialization is only due to the computation of the potential 
in the grid. 

Table 2. 

num. of processors T/CPÜ (1 Eq.) Speed-up T/CPU (80 Eq.) 

2 0.0254 sec. 1.92 2.0 sec. 

3 0.0183 sec. 2.54 1.5 sec. 

4 0.0143 sec. 3.08 1.1 sec. 

The following figures show a snapshot of the initialization of the parallel 
process. The green color represents computation time of each processor. The 
yellow/red color represents communication times. The green zone in the pro- 
cessor 0 represents the integration. It can be observed that the final speedup 
is roughly related to the ratio between the green and yellow areas during the 
initialization phase. 

We would like to point out in this section that if the equation we are inte- 
grating needs an explicit method for its computation, a predictor and a corrector 
method can be obtained using the following recurrences 

Vn+4 + d,{xn+i.xn,2h)yc
n+.2 + d,{xn+4,xn+2,2h)yc

n 

2/f,+3 + d,{xn+3.xn+i.h)yc
n+7 + di{xn+3,xn+2rh)yc

n+1 
(19) 
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Fig. 1. Parallel execution snapshot with 2 processors 
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Fig. 2. Parallel execution snapshot with 4 processors 
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These recurrences and the procedure mentioned in section 2 allows us to 
write the methods in the form 

2/£+4 +d[{xn+4,xn,2h)yc
n+2 + di{xn+i,xn+2,2h)yc

n = 

= h2a0f?l+3 + Y,aif(Xn+l-i^n+l-i) 
j=l (20) 

y„+3 + dl{xn+z.,xn+i,h)yc
n+2 + di(xn+3,xn+2,h)yc

n+1 = 

= h2ß0f>+3 + ^Ä/OCn + l-.-.l&n-J. 

where the coefficients a,- and /?,- are solution of a system of equation similar to 
(12). The implementation in this case is similar to the one proposed in [9]. 

4    Numerical Examples 

In order to test the accuracy of the proposed procedure we apply it to the solution 
of equation (3) using as U(x) the Leonard-Jones potential which has been widely 
discussed in literature. For this problem the potential has been taken as in Simos 
and Raptis 

UW=m(±-±s) (21) 

where m = 500. 
The considered problem is the computation of the relevant phase shifts. We 

initialize the integration with the popular Numerov method using a small step. 
We do not take in account the step given by the Numerov method in the results 
presented. 

We consider (following for example T. Simos) the asymptotic form of the 
solution 

(22) 
y(x) ss Akxji{kx) - Bkrii(kx) ss .4C(sin(fcr - §) 
+ tan<5/ cos(fcr - Q)) 

where ö~i is the phase shift that may be calculated from the formula 

.     x      y(x2)S(xi) -y(x1)S(x2) ,0„, 
tand, = — r—; r rp-^ r (26) 

y{xl)C(x2)-y{x2)C(xi) 

for x\ and x,2 distinct points on the asymptotic region. We take as asymptotic 
region x > 15 and x\ = 15 and x2 = 15 - h, h being the step size. Here 
S(x) = kxji(kx) and C(x) — kxni(kx). 

Since the problem is treated as an initial-value problem, one needs yo and 
y\ before starting the Numerov method. As we have mentioned yo = 0: and 
following [4; 1] the solution behaves as constant by xl+1 as x -» 0. According to 
this we take j/j = h,+1. 
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In the next table, we have chosen k = b and we represent the error with 
respect to the true phase shift of the proposed method using order 6, the results 
can be compared with those obtained by Simos [5]. 

Table 3. k=5. Accuracy in phase shift. Order 6. Number of steps 292, h = 0.05 

1 True Phase shift Computed Phase shift Error 
0 -0.4831 -0.4832 10"4 

1 0.9282 0.9277 5  10~4 

2 -0.9637 -0.9639 2  10~4 

3 0.1206 0.1170 36  10-4 

4 1.0328 1.0349 21   10"4 

5 -1.3785 -1.3779 6  10~4 

6 -0.8441 -0.843 8 10~4 

7 -0.5244 -0.5256 12  10~4 

8 -0.4575 -0.4575 - 
9 -0.7571 -0.7571 - 
10 1.4148 1.4148 - 

All computations were carried out on a Silicon Graphics Origin 200 Server 
with four processors MIPS R10000 and the MPI library LAM 6.3 [2]. In the 
present architecture communication is an operation of write/read using the 
shared memory. We have used FORTRAN and Double precision arithmetic with 
16 digits accuracy. 

Conclusion: As we can see, the fact that we need to compute all the coefficients 
in each step means a computational cost of few seconds, even if we are working 
with big systems of ODEs. However we are obtaining a significant improvement 
in the precision. In the opinion of the authors, the effectiveness of the method 
proposed in this work has been demonstrated since parallel machines with at 
least a few processors are nowadays quite commonly available. 
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Abstract. An efficient parallel algorithm, farmzeroinNR, for the eigen- 
value problem of a symmetric tridiagonal matrix is implemented in a 
distributed memory multiprocessor with 112 nodes [ForOO]. The basis 
of our parallel implementation, is an improved version of the zeroinNR 
method [Ral93]. It is consistently faster than simple bisection and pro- 
duces more accurate eigenvalues than the QR method. As it happens with 
bisection, zeroinNR exhibits great flexibility and allows the computation 
of a subset of the spectrum with some prescribed accuracy. Results were 
carried out with matrices of different types and sizes up to 104 and show 
that our algorithm is efficient and scalable. 

1    Introduction 

The computation of the eigenvalues of symmetric tridiagonal matrices is one of 
the most important problems in numerical linear algebra. The reason for this 
is the fact that in many cases the initial matrix, if not already in tridiagonal 
form, is reduced to this form using either orthogonal similarity transformations, 
in the case of dense matrices, or the Lanczos method, in the case of large sparse 
matrices. 

Essentially we can consider three different kinds of methods for this problem: 
the QR method and their variations [Par80], [Dem97], the divide-and-conquer 
methods2 [Cup81], [DS87], and the bisection-multisection methods [Wil65], 
[RR78], [Par80], [Ber84]. The bisection method is a robust method but is slower 
than the other methods for the computation of the complete set of eigenvalues. 
However, because of the excellent opportunities it offers for parallel processing, 
several parallel algorithms have been proposed which use bisection to isolate 
each eigenvalue and then some additional technique with better convergence rate 

1 Candidate to the Best Student Paper Award 
2 Available as LAPACK routine sstevd: a good choice if we desire all eigenvalues and 

eigenvectors of a tridiagonal matrix whose dimension is larger than about 25 [Dem97, 
pg. 217]. 
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to compute the eigenvalue to the prescribed accuracy [LPS87], [IJ90], [Kal90]. 
[BW20], [DHvdV93]. One of such methods, dubbed zeroinNR, has been proposed 
in [Ral93] and uses an original implementation of the Newton-Raphson's method 
for this purpose. 

2    A Sequential Algorithm: zeroinNR 

Let A be a real, symmetric tridiagonal matrix, with diagonal elements oi,..., a„ 
and off-diagonal elements 61,..., 6n-i- The sequence of leading principal minors 
of A is given by 

fpo(A) = l 
^Pi(A) = 0l-A (1) 

It is well known that the number of variations of sign in this sequence equals the 
number of eigenvalues of A which are strictly smaller than A. 

To avoid overflow problems, the sequence (1) can be modified to the form 

f 9o(A) = 1 
{ «71(A) =ai-A (2) 
[<Z,-(A)=p1-(A)/pI-_i(A)) i = 2,3,...,n 

and the terms of the new sequence can be obtain by the following expressions. 

r <?o(A) = 1 
4<7i(A)=ai-A (3) 
[ <7,(A) = (a, - A) - 6?/<?,-_i(A), i = 2,3,.. ..n 

where the number of negative terms g,-(A), i = 0,..., n. is equal to the number 
of eigenvalues strictly smaller than A. This is the basis for the bisection method 
implemented in [BM+67], which is known to have excellent numerical properties 
in the sense that it produces very accurate eigenvalues. The drawback of bisec- 
tion is its linear convergence rate3 that makes the method slower than others, 
at least for the computation of the complete system. Different authors have pro- 
posed modifications of the simple bisection method in order to accelerate its 
convergence. One such proposal, dubbed the zeroinNR method, has been given 
in [Ral93] and essentially uses Newton-Raphson's method to find an eigenvalue 
after it has been isolated by bisection. The correction pn{xk)/p'n{xk), in the 
iterative formula of the Newton-Raphson method, 

xk+1 *-Xk - !p\, (4) 
is obtained without explicitly calculating the values of the polinomial pn(xi<)- 
and its derivative p'n(xk), therefore avoiding overflow and underflow in such 
3 The bisection method converges linearly, with one bit of accuracy for each step. 
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computations. For this purpose the following algorithm has been derived. From 
(2) we have, 

Pi = QiPi-\ 

and by differentiation 

p'i = q'iPi-i + QiPi-i 

and carrying out the division by p,, we obtain the following expression 

?i = i + p±± (5) 
Pi      Qi       Pi 

which relates the arithmetic inverses of the Newton-Raphson correction for the 
polynomials p,_i and pi, and their quotient qt. 

From the recursive expression, (3), we have that, 

9; = -l + &?%^     i = 2,3,...,n 
Q>-i 

and carrying out the division by g,, 

qi     qt V       Qi-i li-iJ 

Using the notation 

AQi=q'i/Qi-,    Api^p'Jpi 

the complete computation of, 

Apn =p'n{x)/p„(x) 

is expressed in the following equations, 

q\ = a\ — x 
Aqi = Api = -l/<?i 

qt = o, - x- &■/g,-_i "I (6) 
Aqt = (-l + 6?/g,-_i *Aq,-l)/qi \i = 2,...,n 
Ap, = Aqi + Api-i J 

where Aqt = q\{xk)/qi{xk) and Ap, = p\(xk)lpi(xk). 
It is important to observe that in the computation of Apn using the formulae 

(6), the values g,, i = 1,..., n, are obtained, and its signs can be used to derive a 
method that combines bisection and Newton-Raphson's iteration. We will refer 
to this method as the zeroinNR algorithm. 

So, given an interval [a, 3} which contains an eigenvalue, and given an ap- 
proximation xk € [a.ß], the zeroinNR method will produce, in each step, an 
approximation xk+i to the eigenvalue. 
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The zeroinNR method although not as fast as the QR method (according 
to [Ral93]: zeroinNR is about two to four times slower than QR for the com- 
putation of all eigenvalues, depending on the characteristics of the spectrum) is 
consistently faster than simple bisection (generally, twice as fast) and retains the 
excellent numerical properties of simple bisection. In the present work we have 
introduced some modifications in the original zeroinNR method which actually 
make it faster. Numerical tests were carried out in a transputer based machine 
using double precision arithmetic. The methods were implemented in Occam 2, 
the official transputer's language. 

We were able to find out the errors in the computed eigenvalues since we 
have used matrices for which analytic expressions for the eigenvalues are known. 
We conclude that, for small matrices, the accuracy of zeroinNR is comparable 
to that of the QR method as implemented in the MatLab system [Mat99], but 
as the size of the matrices grows, the zeroinNR method provides more accurate 
eigenvalues than QR method. 

This can be appreciated in Figure 1, where the absolute erros of a matrix 
of size 1000, are plotted. We have used the tridiagonal matrix with a,. = 2 and 
bj = 1 which eigenvalues are given by 

A,- = 2 + 2 cos 
ITT 

n+.l 
i = 1.. .,n. 

9.0E-15 

8.0E-15 

7.0E-15 
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1.0E-15 

0.0E+00 

QR 
zeroinNR 

0     100   200   300   400   500   600   700   800   900 

Fig. 1. Absolute errors of the eigenvalues of a matrix (n — 1000) computed with 
zeroinNR and QR. 

3    An Efficient Parallel Algorithm: farmzeroinNR 

The sequential zeroinNR method can be readily adapted to parallel processing 
since several disjoint intervals can be treated simultaneously by different proces- 
sors. We have developed a parallel organization under a processor farm model 
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and we will refer to this parallel implementation as the farmzeroinNR method. 
The typical architecture for this model is a pipeline of processors (workers), 
where the master sends tasks to workers and gets back the results produced. 

Each time a processor produces two disjoint intervals containing eigenvalues, 
as the result of a bisection step, it keeps only one of them and passes back to the 
master the second interval which is kept in a queue of tasks. As soon as there 
is an available worker somewhere in the line, a new task is fed into the pipeline. 
Because of this mechanism, the algorithm achieves dynamic load balancing. 

A dynamic distribution of tasks results from the fact already mentioned, as 
soon as a worker finishes a task, it will get a new one from the queue (which is 
managed by master), if such queue is not empty. The advantage of such dynamic 
workload distribution gets more important as n grows. It must be noted that, 
because some tasks take longer to finish than others, workers may not execute 
the same number of tasks, but will spend about the same time working. 

The pseudocode to the master and worker processors are given in Algorithm 
1 and Algorithm 2, respective!}7. 

eig <— 0 
for   k <— 1 .. p — 1 do 

{ worker[k] <r- initialJnterval[k] 
procs «— 0 
while   eig < n do 

' case input-channel is_a 
if procs > 0 do 

j output «— interval to workers 
interval  —>     I        \ procs <— procs — 1 

else —> 
{ queue <— interval 

' eig «— eig + 1 
if queue not empty do 

j output <— interval to workers 
else —> 

{ procs <— procs + 1 

eigenvalue 

send signal to terminate 

Algorithm 1: FarmzeroinNR master processor pseudocode. 

It must be noted that messages exchanged between the master and some 
worker in the pipeline need to be routed through the processors that lay in 
between. For the global performance of the system it is important that messages 
reach their destination as quickly as possible, therefore communication must be 
given priority over the computation. 

To compute eigenvectors, once we have computed (selected) eigenvalues, we 
can use inverse iteration. Convergence is fast but eigenvectors associated with 
close eigenvalues may not be orthogonal. The LAPACK's routine sstein uses re- 
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while  not receive signal to terminate do 
interval •*— input-channel 
if interval has more than one eigenvalue do 

J intervals *- bisection method(interval) 
\ output «— intervals (to the master) 

else —¥ 
eig <— extract isolate eigenvalue 
output «— eig (to the master) 

Algorithm 2: FarmzeroinNR worker processor pseudocode. 

orthogonalization of such eigenvectors. This does not solve the problem when 
there is a cluster with many close eigenvalues [Dem97, pg. 231], and recent 
progress on this problem appears to indicate that inverse iteration may be re- 
paired to provide accurate, orthogonal eigenvectors without spending more than 
0(n) flops per eigenvector. This will make bisection, or zeroinNR and repaired 
inverse iteration the algorithm of choice in all cases, no matter how many eigen- 
values and eigenvectors are desired. 

4    Performance Analysis 

As already mentioned, a typical architecture for the processor farm model con- 
sists of a bidirectional array, forming a single pipeline (SP). with the master 
placed at one end of the array (Fig. 2). 

p, - p3 - P^|-{P^7)4PT]--JP^ 

Fig. 2. Single pipeline, with 112 nodes. 

It is predictable that as the number of workers increases, the communication 
overhead becomes more significant and processors that are further away from the 
master take longer to communicate with him. Furthermore, the activity in the 
links of the processors which are closer to the master grows with the number of 
processors and some congestion is to be expected if the computational complexity 
of each task is not sufficiently large. In an attempt to overcome the problems just 
mentioned, we decided to test the parallel algorithm with a modified topology, 
referred to as multiple pipeline (MP). which consists of seven pipelines, each one 
with 16 transputers; the masters of such pipelines are themselves connected in 
a single pipeline (Fig. 3). 

At the beginning, the interval that contains all the eigenvalues is decom- 
posed in 7 subintervals of equal width which are distributed among the different 
pipelines. 
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Fig. 3. Multiple pipeline, with 112 nodes. 

Although this may reduce to some extent communication overhead and wai- 
ting times, it has an important disadvantage which is an eventual deterioration of 
the load balancing, which becomes critical when some of the subintervals contain 
a much larger number of eigenvalues than others. Therefore, the spectral distri- 
bution of the matrix is an important factor to be considered when comparing 
the performance of the SP and MP architectures. For this reason we have used 
four different types of matrices (see Table 1 where a,-,i = l.....n, represents 
the diagonal elements &,-, i = 1...., n - 1, represents the sub-diagonal elements) 
with different spectral distributions (see Figures 4, and 5),and sizes n ranging 
from one thousand to ten thousand. 

Matrix Elements Analitical Formula 

I 
a, = 0 

b, =b 
/    0,     ** V < a + 2b cos  > 
I                  n + 1Jfc=i 

II 

a.i = a — b 

a, = a. i = 1,..., n 

an = a + b 

bi = b. i=l n 

<^ a + 2b cos -—-—'— } 
I                        2n       h=i 

III 
a, = 0 

{-"+tt-'L bi = y/i(n - i) 

IV 
a, = -[(2. - \){n - 1) - 2(» - l)2] 

bj = i(n — i) {-**-"L 
Table 1. Matrix Types. 
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Fig. 4. Spectral distributions for matrix I (left) and matrix II (right), with n = 1000. 

Z   50 r o 
43 
E 

« 400 r 
2 350 
| 300 
5,250 - 
• 200 
° 150 
1 100 

HiimiUL 
Sublntervals of [-999, 999] Sublntervals of [-S99000, 0] 

Fig. 5. Spectral distributions for matrix III (left) and matrix IV (right), with n = 1000. 

We have computed the efficiency in the usual way, i.e., 

112 Tn2 

where T\ represents the time taken by a single transputer executing the sequen- 
tial implementation of zeroinNR, and Tn-y is the time taken by farmzeroinNR 
with 112 processors. In Table 2 such ratios are given, representing by £(SP) 
and E(MP) the efficiency obtained for the single pipeline and multiple pipeline 
implementations, respectively. 

Matrix I Matrix II Matrix III Matrix IV 
n £(SP) £(MP) E(SP) £(MP) £(SP) £(MP) £(SP) £(MP) 

1000 55% 45% 60% 72% 61% 71% 60% 35% 
5000 80% 56% 92% 80% 92% 89% 90% 38% 
7000 93% 64% 91% 80% 91% 85% 94% 399c 
10000 95% 56% 99% 85% 99% 91% 97% 39% 
Table 2. Efficiency of farmzeroinNR, for matrices of type I, II, III and IV 

As it can be appreciated from this table, the MP implementation is less effi- 
cient than the SP implementation, except for the case of Matrices II and III of 
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size n = 1000. In general, we have obtained better efficiency values with the SP 
architecture and we conclude that, for n sufficiently large, the communication 
overhead is not as important as the unbalance in the distribution of tasks intro- 
duced by the MP architecture. This is particularly clear in the case of matrix 
IV since for the larger values of n the efficiency for SP is about 2.4 times better 
than the efficiency for MP. The explanation for this can be found in Figure 5 
(right side): the number of eigenvalues received by each one of the seven pipelines 
presents, in the case of matrix IV, a large variation, from about 70 to about 370. 
Another important aspect that must be taken into account is that in the MP 
implementation there are only 105 workers, since 7 processors are playing the 
role of master. However, even if we had used the modified formula 

105 TU2 

to compute the efficiency for the MP implementation, the values produced in 
this way would still be lower than those obtained for the SP architecture in most 
cases. 

5    Conclusions 

We have carried out a parallel implementation of an efficient algorithm, dubbed 
zeroinNR, for the eigenvalue problem of a symmetric tridiagonal matrix, on a 
distributed memory system. The sequential zeroinNR method, although not as 
fast as QR. is consistently faster than simple bisection and retains the excellent 
numerical properties of this method. We have numerical evidence to support 
the claim that our method produces eigenvalues with smaller errors than those 
produced by QR. For the parallel implementation we used a farm model with 
two different topologies: a single pipeline (SP) of 112 processors and a multiple 
pipeline implementation (MP) consisting of seven pipelines, each one with 16 
processors. The MP architecture reduces the communication overhead to some 
extent but is not able to retain fully the excellent load balancing of the SP 
implementation. This trade-off is not clear since it depends on the spectral dis- 
tribution of each particular matrix. We have used matrices of different types to 
study this trade-off and conclude that for matrices sufficiently large, the parallel 
algorithm under the SP architecture performs better than the MP architecture. 
It must be emphasized that the parallel algorithm under the SP architecture is 
very efficient: for matrices of size n = 10000 we got efficiency values which are 
in all cases tested larger than 95%. 
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Abstract. As far as the presently available public parallel libraries are 
concerned, users have to set parameters, such as a selection of algorithms, 
an unrolling level, and a method of communication. These parameters 
not only depend on execution environment or hardware architecture but 
also on a characteristic of the problems. Our primary goal is to solve 
two opposite requirements of reducing users parameters and getting high 
performance. To attain this goal, an auto-tuning mechanism which auto- 
matically selects the optimal code is essential. We developed a software 
library which uses GMRES(m) method on distributed memory machines, 
the HITACHI SR2201 and HITACHI SR8000. The GMRES(m) method 
is one of the iterative methods to solve large linear systems of equa- 
tions. This software library can automatically adjust some parameters 
and selects the optimal method to find the fastest solution. We show 
the performance of this software library and we report a case where our 
library is approximately four times as fast as the PETSc library which 
is widely used as a parallel linear equation solver. 

1    Introduction 

Linear algebra, in particular the solution of linear systems of equations and 
eigenvalue problems, is the basic of general calculations in scientific computing. 
When a coefficient matrix of linear systems of equations is large and sparse, 
iterative methods are generally used. For example, if a coefficient matrix is real 
symmetric and positive definite, the Conjugate Gradient method (CG) is often 
used. In the case of a nonsymmetric matrix, there are a number of iterative meth- 
ods with lots of variations [1.2]. Therefore, in the nonsymmetric case, the most 
efficient method is left for to further discussion. In addition, there are a few par- 
allel implementations of the iterative methods in the nonsymmetric case. In this 

Candidate to the Best Student Paper Award 
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paper, we focussed on the GMRES(m) which is improved GMRES(Generalized 
Minimal RESidual method), and developed its library on distributed memory 
machines. 

The GMRES is one of the Krylov subspace solution methods and finds a 
suitable approximation for the solution x of Ax = b by using the minimum 
residual approach at every iteration step. 

The GMRES(m) restarts the GMRES after each m steps, where m is a 
suitably chosen integer value. The original method without restarting is often 
called full-GMRES. This restarting reduces both calculation counts and the size 
of memory allocation. 

This paper is organized as follows. Description of the algorithm of our version 
of GMRES(m) in Section 2. Section 3 is about the parameters for auto-tuning, 
and how to search for the optimal parameters. In Section 4, we show auto-tuned 
parameters and execution time of our library using the auto-tuning methodology. 
Finally. Section 5 gives conclusions for this paper. 

2    The GMRES(m) Algorithm 

When given an n x n real matrix A and a real n-vector b. the problem considered 
is: Find x which belongs to IR" such that 

Ar = b . (1) 

Equation(l) is a linear system. A is the coefficient matrix, b is the right-hand 
side vector, and x is the vector of unknowns. 

Figure 1 shows our version of preconditioned GMRES(???) algorithm. Note 
that A" in the Figure 1 is a preconditioning matrix and this algorithm uses right- 
preconditioning because of the advantage that it only affects the operator and 
does not affect the right-hand side. 

2.1    Parallel implementation of GMRES(m) 

The coefficient matrix A, the vector of unknowns x. the right-hand side vector 
b. the temporary vectors Vi (m + 1 vectors), and orthogonalized vector w are 
distributed by row-block distribution and each processor element(PE) except 
for the last PE has the same number of rows. On the other hand, the matrix H. 
the vector s, and the vector c are the same on every PE. 

Since the vector x and v, are needed to be gathered on every PE, a temporary 
vector of size n. where n is the size of matrix A, is required. 

In the parallel implementation, lines 2, 7. and 29 in the Figure 1 which include 
matrix-by-vector products and line 9 in the Figure 1 which includes dot product 
require interprocessor communications. 

In lines 14-22 in the Figure 1 which include QR decomposition by using 
Givens rotations, every PE updates the matrix H which holds the same data. It 
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1: j-o=initial guess 
2: r = b — Axo 
3: for j=l,2.--- 
4:    vo = r/||r|| 
5:    e0 = ||r|| 
6:    for 7=0,1.- • -.m — 1 
7:       w = AK~lVi 
8:       for it=0,l.•••,?' 
9: hk,i = (w,vk) 

10: w — w — hk.iVk 
11:       end 
12:       hi+i.i = ||ic|| 
13:       i';+i = w/hi+i,i 
14:       for A—0.1,■••,?'-1 

15: 

16:       end 

17:       c, = 

hk.i Ck    sk hk,i 

hk + i.j -Sk ck hk+i,i 

.■+*L 

18: 

19 
20 
21 
22 
23 

24 
25 
26 
27 

28: 

29 
30 
31 
32 

e;+i = -s,e, 
e, = c,e, 
A-7,i = Cjh,,j + Sjh, + i,i 

hi+i., = 0.0 
If e, + i is small enough then 

update x: (processes 25-28) 
quit 

end 
for k=0.1,---,m - 1 

Vk 
end 

H, 1(e0,ei, ■ ,£k) 

x = xo + K   1 J>    ViVi 
i=0 

r — b- Ax 

W ll'"ll/IHI 's small enough quit 
Xo = x 

end 

Fig. 1. The preconditioned GMRES(m) algorithm 

r. in, and w are vectors and if i ^ j then vt and Vj are different vectors, and 
not elements of the same vector v. m is the restarting frequency. 

seems that holding H is inefficient. However m is several hundreds at the most 
and the decomposition of the matrix H whose size is (m + 1) x m is inefficient 
to parallelize. Therefore, the overhead time that every PE updates at the same 
time is very small. 

3    Method for searching parameters 

We have developed automatically tuned parallel library by using CG [3]. In 
this section description of several tuning factors to be considered in precondi- 
tioned GMRES(m) algorithm and methods of tuning parameters automatically 
are provided. 

Our library automatically sets several parameters to get high performance. 
This action is executed after being given a problem. Therefore, our library can 
select the best method according to a characteristic of the problem. Our library 
provides a lot of source codes. Users only have to compile them once. While our 
library code is being executed, the optimal code is selected one after another 
automaticallv. 
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3.1     Matrix storage formats 

In the sparse matrix formats, we store the nonzero elements by rows, along 
with an array of corresponding column numbers and an array of pointers to 
the beginning of each row (see Figure 2). It is called as compressed row storage 
format. 

A = 

'a 6 0 0" 
c de 0 
ofgh 

Loo« jj 

rp[5]={0.'2.5.8.10}: /* pointers to the beginning of each row */ 
cval[10]={0.1,0,1.2.1.2,3.2.3};       /* indices */ 
ava\[10] = {a.b,c.d.e.f,g,h,i,j}\ /* elements */ 

Fig. 2. Compressed row storage format 

In case that the number of nonzero elements at each row are almost equal, 
compressed row storage format was converted to a matrix format whose size of 
each row is fixed (see Figure 3). This is called compressed row storage format for 
unrolling. Using such a matrix format, we expected to save the execution time 
because of the effect of unrolling. 

cval[12] = {0.1,0.0.1.2.1.2.3,2.3.0}; /* indices */ 
av&\[V2] = {a. b,0. c.d.e. f, g. h.j. j.0}: /* elements */ 
nsize[4]:={2.3.3,2}: /* the number of elements of each row*/ 
csize=3: /* fixed size */ 

Fig. 3. Compressed row storage format for unrolling 

Before executing the main iteration, the actual time of the matrix-by-vector 
product was measured. With this information, we can select the best matrix 
storage format. 

3.2    The stride size of loop unrolling for matrix-by-vector products 

To perform the matrix-by-vector product at high performance, we should se- 
lect the best size of the stride for loop unrolling. This depends on the machine 
architectures and optimization level of the compilers. 

Our library prepares a large number of loop unrolling codes. For example, 
if the number of nonzero elements of a matrix .4 at each row is smaller than 
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10, all expanded loop unrolling codes are examined. In addition to unrolling the 
inner-loop, we unroll also the outer loop with strides 1, 2, 3, 4, and 8. 

There are two types of codes, i.e., a non-prefetch code and a prefetch code. 
The non-prefetch code uses indirect access just as it is or entrusts the compiler 
with the treatment. The prefetch code takes off indirect access to the element of 
arrays (see Figure 4). 

Non-prefetch code Prefetch code 
1: do i=l,10 1: m=ind(l) 
2:     s = s + a(i) * b(ind(i)) 2: do i=l,9 
3: end do 3:      s = s + a(i) * b(m) 

4:      m=ind(i-|-l) 
5: end do 
6: s = s + a(10) * b(m) 

Fig. 4. Non-prefetch code and prefetch code 

As for the prefetch codes, we unroll the outer loop so that the sizes of the 
stride can be 1, 2. 3. and 4. In total, there are 9 ways of the unrolling codes in 
each of the number of nonzero elements at each row. 

Same as in the case of the matrix format, actual time of the matrix-by-vector 
product was measured in order to select the best unrolling code in the above. 

3.3    How to comunicate in matrix-by-vector products 

In matrix-by-vector products, we need a gather operation. Because the elements 
of a vector are distributed on all of the PEs. We can select the following five 
implementations for the communications. 

No dependence on the location of the nonzero elements of matrix .4: 

1. Use MPI-AUgather function from the MPI library. 
2. Gather in 1 PE then broadcast with MPLBcast function. 

Dependence on the location of the nonzero elements of matrix ,4: 

3. First use MPLIsend function, next use MPIJrecv function. 
4. First use MPIJrecv function, next use MPIJsend function. 
5. Use MPLSend and MPIJRecv functions. 

A communication table is used in the method from 3 to 5. This table indicates 
the relation between a element index of a vector and a PE number which requires 
the indexed value. This relation is created from nonzero element indices of a 
matrix A. By using this communication table, communication traffic becomes 
very small because an element is transmitted to a PE which requires it. We 
communicate all of the elements from minimal index to maximal index to other 
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PEs so that we need only one communication step. In the case that nonzero 
elements of matrix A are located in limited parts, using the communication 
table is quite effective. 

In the method 5, since both MPLSend and MPLRecv functions are block- 
ing communication, execution of other instructions is suspended. However this 
method saves starting time for the communication. If the total amount of com- 
municated data is small we can get high performance by selecting the order of 
communication. 

As in the case of the matrix format, the actual time of the matrix-by-vector 
product was measured and the best way from the alternatives above was selected. 

3.4 Restarting frequency 

The larger the restarting frequency m. the smaller the iteration count we need. 
However if m is large, the execution time of one iteration increases with the 
increment of iteration counts. Because in the orthogonalization, we must cal- 
culate a new vector to be orthogonalized to all vectors which have caluculated 
by earlier iteration (lines 8-11 in the Figure 1). The total amount of calculations 
for the orthogonalization is proportional to the square of the iteration counts. 

There are many ways to decide on m [5]. In our implementation we change 
the value of ??? dynamically [6]. Here, let mmax be maximal restarting frequency. 
We decide on the value of m as follows: 

(1) m=2      (initial value). 
(2) Add 2 to m if 777 < ?77max. 

(3) Back to (1). 

Our library sets 128 to mmax. If the library cannot allocate memory, it sets 
the maximal size to mmax within the maximum permissible memory allocation. 
The reason why we decide mmnx is to save the amount of calculation for the 
orthogonalization. 

3.5 Gram-Schmidt orthogonalization 

Modified Gram-Schmidt orthogonalization (MGS) is often used on single proces- 
sor machines because of its smaller computational error. However on distributed 
memory machines, it is not efficient because of the frequent synchronization 
especially in the case of a large iteration count. 

On the other hand, classical Gram-Schmidt orthogonalization (CGS) is ef- 
ficient on distributed memory machines because the synchronization is needed 
only once. 

In case of using CGS. lines 8-11 in the Figure 1 are replaced as shown in 
Figure 5. 

CGS has less in computational error than MGS. Therefore, our library pro- 
vides iterative refinement Gram-Schmidt orthogonalization [4] (see Figure 6). 
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1 for k=0,l.---,i 
2 hk., = (u\vk) 
3 end 
4 for fc=0,l.---,i 
5 ■w = w - hk.H'k 
6 end 

Fig. 5. Classical Gram-Schmidt orthogonalization 

1 for k=0,l,---,i 
2 hk,i = (w,Vk) 
3 end 
4 for fc=0,l,---,i 
5 u> = u' - hk,H'k 
6 end 
7 for A—0,l,---,i 
8 hk = (w,vk) 
9 hk,i = hk,i + hk 

10 end 
11 for fr=0,l"V- 
12 w — w - hkVk 
13 end 

Fig. 6. Iterative refinement Gram-Schmidt orthogonalization 

The execution time by this method is twice as large as primary CGS. However 
it is comparable to MGS in computational error. In our library, we measure 
the orthogonalization time for calculating a new vector to be orthogonalized to 
«'max/2 vectors. We then select the fastest method. MGS or CGS. 

On single processor machines, the MGS is advantageous to the CGS because 
of localization of memory access. On the other hand, on distributed memory ma- 
chines, it is not clear which is the best because we must consider the combination 
of cache memory size, the number of vectors, the number of PEs. interprocessor 
communications speed and so on. 

When the convergence is not improved at two straight steps, we change to 
the iterative refinement Gram-Schmidt orthogonalization. 

3.6    Preconditioning 

There are many occasions and applications where iterative methods fail to con- 
verge or converge very slowly. Therefore, it is important to apply preconditioning. 

In our library, we apply diagonal scaling to a coefficient matrix .4. In this case, 
we expect that not only it helps to reduce the condition number and often has 
a beneficial influence on the convergence behavior but also the computational 
complexity and memory allocation are reduced by fixing to 1 in all diagonal 
elements. In addition to the diagonal scaling, we can select the following three 
implementations. 
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1. No preconditioning. 
2. Polynomial Preconditioning [7]. 
3. Block incomplete LU decomposition [8]. 

Let A be the scaled matrix such that diag(A) = I. 
In case 2. the matrix A can be written A — I — B, and A~l can be evaluated 

in a Neumann series as 

A-1 = (I- B)-1 =I + B + B'2 +B3 + --- . (2) 

We take a truncated Neumann series as the preconditioner. e.g. approximat- 
ing A-1 by A'-1 — I + B. In this case, A'-1 is very similar to A but plus and 
minus signs of elements of A"-1 are reversed except for the diagonal elements. 
Since this preconditioning does not need extra memory allocation which holds 
matrix I + B data, in particular GMRES(???) which requires a lot of memory 
allocation, it is very useful. 

However, approximation of ,4_1 by / + B is efficient only when matrix .4 is 
diagonally dominant, namely, spectral radius of B satisfies the relations p(B) < 
1. If p{B) > 1 then I + B does not approximate A~l. 

In the preconditioner 3. our library employs zero fill-in ILL" factorization 
called as ILL(O) on each individual block, which is diagonal submatrix on each 
PE. In this case, we assume A' = LU. 

In lines 7 and 28 in the the Figure 1, there is the matrix-by-vector product 
in the form of K~lr. When we assume q = (LU)~1i\ we can solve linear system 
of equations LUq = r. where q is the vector of unknowns. 

To solve q of the linear system is as follows. 

Lz — r   (Forward substitution) . 
Uq = z   (Backward substitution), ' 

where z is a temporary vector. As shown above, it is possible to calculate K~1r. 
If restarting frequency m is large, the preconditioning is more efficient. Be- 

cause the overhead time of preconditioning depends on the whole iteration count 
to converge, setting m at a large value reduces the total iteration count. 

The best preconditioning selection is as follows. We iterate the main loop 
(lines 6-24 in the Figure 1) for m — 2 by using every method. Next, we select the 
method whose relative decrease of the residual norm (|b'2||/||?"o||) is the smallest. 
Note that we do not consider the execution time, we employ the method which 
reduces the residual norm the most after the same number of iterations. 

4    Experimental results 

We implemented our auto-tuning methodologv on the HITACHI SR2201 and 
HITACHI SR8000. 

The HITACHI SR2201 system is a distributed memory, message-passing par- 
allel machine of the MIMD class. It is composed of 1024 PEs. each having 256 
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Megabytes of main memory, interconnected via a communication network hav- 
ing the topology of a three-dimensional hyper-crossbar. The peak interprocessor 
communications bandwidth is 300 Mbytes/s in each direction. We used the HI- 
TACHI Optimized Fortran90 V02-06-/D compiler, and compile option we used 
was - WO. 'opt(o(ss),fold(l))'. We also used the HITACHI Optimized C compiler, 
and compile option we used was + 04 -Wc.-hDl. 

The HITACHI SR8000 system is a distributed memory, message-passing par- 
allel machine of the MIMD class like the HITACHI SR2201. It is composed of 
128 nodes, each having 8 Instruction Processors (IPs), 8 Gigabytes of main 
memory, interconnected via a communication network having the topology of 
a three-dimensional hyper-crossbar. The peak interprocessor communications 
bandwidth is 1 Gbytes/s in each direction. We used the HITACHI Optimized 
Fortran90 V01-00 compiler, and compile option we used was - WO, 'opt(o(4),fold(l)J' 
-noparallel. We also used the HITACHI Optimized C compiler, and compile op- 
tion we used was +04 -Wc.-hDl -noparallel. 

We evaluated performance with the following conditions: 

- Convergence result   :   ||n-||/||r0|| < 1.0 x 10-12 

- Initial guess   :   x0 = (0.0. • • •, 0)r 

- Precision type  :  double 

4.1     Test problems 

Evaluation on our library by employing three problems whose maximal number 
of nonzero elements of a matrix A at each row is 3. 5, and 7. 
Problem 1 

The coefficient matrix A is a Toeplitz matrix such as 

A = 

where R — 1.0, 1.5, and 2.0. The right-hand side vector is b = (1,1, • • •, 1)   . 
The size of matrix A is 4,000.000. 

Problem 2 
An elliptic boundary value problem of partial differential equation: 

-vxx - ityy + Rux = g{x,y) , 
u{x,y)\dn = l + xy , 

where the region is .<? = [0,1] x [0,1], and R = 1.0. The right-hand side 
vector b is set to the exact solution of v = 1 + xy. We discretize the region 
by using a 5-point difference scheme on a 400 x 400 mesh. The size of matrix 
A is 160.000. 

Problem 3 
An elliptic boundary value problem of partial differential equation: 

2 1 
0 2 1 
R 0 2 1 

R 0 2  ••• 
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-uxx -uyy - M-; + Rux = g{x,y,z) , 
u{x,y)\dn = 0.0 . 

where the region is /? = [0,1] x [0,1] x [0.1]. and R = 1.0 and 100.0. The right- 
hand side vector b is set to the exact solution of u = exy: sin (TO) x sin (Try) x 
sin(7rc). We discretize the region by using a 7-point difference scheme on a 
80 x 80 x 80 mesh. The size of matrix A is 512,000. 

4.2    The results 

Tables 1-3 show the execution time on each problem in the case of no auto- 
tuning, auto-tuning, and using PETSc[4]. In addition, they show auto-tuned 
parameters in the auto-tuning case. 

The calculation time of the QR decomposition in the lines 14-23 of Figure 
1 was less than 1 second on every problem. Even though each PE contains the 
QR decomposition, this overhead time was very small and it can be ignored. 

Following parameters were set as the sample of the no auto-tuning case. These 
are common parameters which were .used comparison with the no auto-tuning 
case and the auto-tuning case. 

Matrix storage format : Compressed row storage format for unrolling. 
Unrolling : Non-prefetch and no unrolling code. 
Communication : Use MPLAllgather funuction from the MPI library. 
Restarting frequency    : 30 (fixed) 
Orthogonalization        : Iterative refinement Gram-Schmidt. 
Preconditioning : None. 

In case of the auto-tuning version the leftmost explanation has the following 
meaning. 

iter.   : Iteration count. 
time  : Total execution time including auto-tuning, (sec) 
unro. : Unrolling type. For example, P(2.3) means prefetch code, 

two outer loops expanded, and three inner loops expanded. 
On the other hand. N(2,3) means non-prefetch code. 

com. : Communication type. 
Send • • • use MPLSend and MPIJRecv in pairs. 
Isend • • ■ use MPIJsend and MPIJrecv in pairs. 
Irecv • • • use MPIJrecv and MPIJsend in pairs. 

orth. : Orthogonalization type. 
prec. : Preconditioning type. 

I + B ■ ■ ■ polynomial preconditioning. 
BILU • • • block incomplete LU decomposition. 

The matrix storage format in Tables 1-3 has been omitted since the com- 
pressed row storage format for unrolling is selected in all problems. 

As for PETSc. we used it with almost default parameter values. For example, 
the restarting frequency is 30. the technique for orthogonalization is the iterative 
refinement Gram-Schmidt method and so on. Only the convergence is decided 
to be set 10~12 in order to compare with our library. 
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(a) R=1.0 

Table 1. The results for problem 1 

SR2201 (b) i?=1.5 SR2201 

PE |         81       16 321        64 128 PE |         8|       16 321        64 128 

No auto-tuning No auto-tuning 

iter. 43 43 43 43 43 iter. 93 93 93 93 93 

time 49.6 36.7 25.0 20.9 22.0 time 101.2 85.5 56.7 45.7 44.3 

Auto-tuning Auto-tuning 

iter. 18 19 19 19 20 iter. 50 93 93 93 93 

time 40.5 24.0 14.3 8.3 5.3 time. 72.5 29.1 16.6 9.2 5.7 

unro. N(L3) N(L3) N(3,3) N(3,3) P(3,3) unro. N(1.3) N(l,3) N(3,3) N(3,3) N(3,3) 

com. Send Send Irecv Irecv Send com. Send Send Irecv Send Send 

orth. MGS MGS CGS CGS CGS orth. MGS MGS CGS CGS CGS 

prec. BILL" BILL BILL BILL BILL prec. BILU None None None None 

PETSc PETSc 

iter. 20 20 21 21 21 iter. 55 56 57 58 

time 93.1 45.9 24.5 11.9 6.0 time fail. 148.0 75.5 38.2 19.7 

(c) R=2.0 SR2201 (d) Ä=1.0 SR8000 

PE  |          8|        16 321       64 128 IP   |          8|        16 321       64 128 

No auto-tuning No auto-tuning 

iter. 337 323 323 323 323 iter. 43 43 43 43 43 
time 353.3 277.6 186.9 153.9 143.9 time 25.3 19.0 20.4 20.0 21.0 

Auto-tuning Auto-tuning 
iter. 332 321 321 321 321 iter. 18 19 19 19 20 

time 124.9 86.6 45.0 22.8 13.7 time 23.8 12.9 7.6 5.9 5.1 

unro. N(1.3) N(1.3) N(3.3) N(3.3) P(3,3) unro. N(L3) P(2,3) N(l,3) N(1.3) N(1.3) 

com. Send Send Send Send Send com. Send Send Send Send Irecv 

orth. MGS MGS CGS CGS CGS orth. MGS MGS CGS CGS CGS 

prec. None None None None None prec. BILL BILL BILL BILL BILL 

PETSc 
iter. 
time fail. fail. fail. fail. fail. 

(f) #=2.0 SR8000 (e) i?=1.5 SR8000 

IP   |          8|        16 321       64 128 IP   |          8|        16 32         64 128 

No auto-tuning No auto-tuning 

iter. 93 93 93 93 93 iter. 323 323 323 323 323 

time 53.7 40.0 43.1 41.8 44.4 time 180.3 134.8 145.8 141.4 149.7 

Auto-tuning Auto-tuning 
iter. 50 93 93 93 93 iter. 321 321 321 321 321 

time 38.7 11.9 7.1 5.7 5.7 time 52.2 27.3 14.6 9.6 9.2 

unro. N(2.3) P(2,3) N(1.3) N(1.3) N(2.3) unro. N(2.3) N(2.3) N(2.3) N(1.3) N(1.3) 
com. Irecv Send Send Send Send com. Irecv Irecv Send Send Irecv 

orth. MGS CGS CGS CGS CGS orth. MGS CGS CGS CGS CGS 
prec. BILL None None None None prec. None None None None None 
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(a) J?=1.0 

Table 2. The results for problem 2 

SR2201 (b) J?=1.0 SR8000 

PE 16 32 64      128 
No auto-tuning 
iter. 
time 

21842 
1205.7 

21842 
769.3 

21842 
540.9 

21842 
520.3 

21842 
413.1 

Auto- tuning 
iter. 1349 1328 1429 1596 1497 
time 90.7 44.3 24.3 14.1 7.9 
unro. P(3,5) P(3.5) P(2,5) P(2,5) P(2,5) 
com. Send Send Send Send Send 
orth. CGS CGS CGS CGS CGS 
prec. BILü BILÜ BILU BILU BILU 
PETSc 
iter. 
time 

2614 
576.0 

2049 
219.3 

2913 
153.7 

3213 
81.0 

3934 
57.0 

IP 16 32 64       128 
No auto-tuning 
iter. 
time 

21842 
499.7 

21842 
332.5 

21842 
278.3 

21842 
225.8 

21842 
218.5 

Auto- tuning 
iter. 1349 1328 1429 1596 1497 
time 45.8 23.6 12.3 7.6 4.5 
unro. P(l,5) P(1.5) P(1.5) P(2.5) N(l,5) 
com. Send Send Send Send Send 
orth. CGS CGS CGS CGS CGS 
prec. BILU BILU BILU BILU BILU 

(a) i?=1.0 

Table 3. The results for problem 3 

SR2201 (b) i?=100.0 SR2201 

PE 16 32 64      128 
No auto-tuning 
iter. 
time 

1265 
250.6 149.4 

1265 
98.9 

1265 
90.8 

1265 
80.9 

Auto-tuning 
iter. 288 300 417 417 417 
time 81.9 42.5 12.5 7.3 4.7 
unro. P(2,7) P(2,7) P(1.7) P(1.7) P(U7) 
com. Isend Isend Isend Isend Isend 
orth. MGS CGS CGS CGS CGS 
prec. BILU BILU I + B I + B I + B 
PETSc 
iter. 
time 

236 
182.2 

254 
96.9 

343 
67.0 

465 
44.2 

538 
25.2 

(c) i?=1.0 SR8801 

IP 16 32 64 128 
No auto-tuning 
iter. 
time 

1265 
111.4 

1265 
66.4 

1265 
42.0 

1265 
31.5 

1265 
27.6 

Auto-tuning 
iter. 288 300 417 417 417 
time 43.9 23.5 6.8 4.8 4.4 
unro. P(U7) P(U7) P(l,7) P(U7) P(1.7) 
com. Irecv Isend Isend Irecv Irecv 
orth. CGS CGS CGS CGS CGS 
prec. BILU BILU I + B I + B I + B 

PE 16 32 64 128 
No auto-tuning 
iter. 
time 

626 
124.2 

626 
72.1 

626 
50.9 

626 
44.7 

626 
39.3 

Auto-tuning 
iter. 176 199 207 306 272 
time 45.7 25.3 13.3 11.3 4.3 
unro. P(2,7) P(U7) P(2.7) P(1.7) P(1.7) 
com. Isend Isend Isend Irecv Isend 
orth. MGS CGS CGS CGS CGS 
prec. BILU BILU BILU BILU BILU 
PETSc 
iter. 
time 

203 
156.8 

262 
100.6 

331 
65.6 

310 
29.7 

370 
17.1 

(d) /?=100.0        SR8801 

IP 16 32 64 128 
No auto-tuning 
iter. 
time 

598 
53.1 31.6 

598 
20.0 

598 
15.0 

598 
13.1 

Auto- tuning 
it er. 176 199 207 306 272 
time 24.7 14.0 7.8 7.1 3.8 
unro. P(1.7) P(1.7) P(U7) P(1.7) P(1.7) 
com. Irecv Irecv Isend Irecv Irecv 
orth. CGS CGS CGS CGS CGS 
prec. BILU BILU BILU BILU BILL" 
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Comparison with no auto-tuning and auto-tuning If the problem size 
is large, the execution time of auto-tuning is relatively smaller as compared to 
the total execution time. Tables 1-3 show that auto-tuning method works very 
well. 

Unrolling type In problem 1. non-prefetch code is selected as the unrolling 
type. In the other problems, prefetch code is selected. In problem 1, our library 
often selects the code of 3-unrolled outer loop and 3-unrolled inner loop be- 
cause loop size is small. In problem 3, it often selects no expanded code for the 
outer loop. These results mean that auto-tuning behavior depends on machine 
architectures and compilers. 

Communication type Since the nonzero elements of a coefficient matrix 
A was located at near diagonal intensively in all problems, the communication 
table usage was selected. In the problems 1 and 2, since communication data 
size was small, the method using MPLSend and MPI Jtecv in pairs was selected 
so often. In the problem 3, since communication data size was large, the method 
using MPIJsend and MPIJrecv in pairs was selected. 

Orthogonalization type If the number of PEs became large, the selected 
method was changed from the MGS into the CGS. However the number of PEs 
where the changes happen is different in each problem. For example it changed 
into the CGS for 32 PEs in problem 1. for 8 PEs in problem 2. and for 16 PEs 
in problem 3. 

Preconditioning type In many cases, BILU was selected as preconditioner. 
Table 3 shows that I + B is included in the selected method. Because when the 
number of PEs is large, preconditioning effect of using BILU is small. On the 
other hand, preconditioning with I + B is invariable and it has nothing to do 
with the change of the number of PEs. 

Comparison to the PETSc In the Tables 1 (b) and 1 (c). the PETSc 
failed to converge. In this case, users have to set parameters suitably. On the 
whole, our library is approximately four times as fast as the PETSc library. 

Scalability The execution time is reduced with the number of PEs. Speed- 
ups for some problems are shown in Figure 7. 

5    Conclusion 

Selecting optimal codes to get high performance is very important. It brings 
not only effective utilization of computer resource but also highly user friendly 
library. 

How we can get high performance without setting parameters in detail will 
be the center of public interest. 

Our library is open source and available on-line from out project home page 
at http://www.hints.org/. Evaluation on the other parallel machines are part of 
the future work. 
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Fig. 7. Speed-ups for some problems 
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Abstract. In this paper, we describe an auto-tuning methodology for 
the parallel tridiagonalization to attain high performance. By searching 
the optimal set of three parameters for the performance, a highly efficient 
routine can be obtained automatically. Evaluation of the methodology 
on the distributed memory parallel machines, the HITACHI SR2201 and 
HITACHI SR8000. has been provided. The experimental results show 
1.3-1.8 times speed-up to a not auto-tuned routine which was specified 
with reasonable parameters, and the ratios increased for growing problem 
sizes. Comparison between the execution time of our routine with that 
of the ScaLAPACK's routine shows that our auto-tuned routine is faster 

in manv cases. 

1    Introduction 

Tuning computational kernels is time-consuming work. We still have to use sev- 
eral techniques to attain high performance. To avoid the tuning work, many 
linear algebra programs are constructing by using vendor-tuned BLAS (Basic 
Linear Algebra Subprograms) routines. The BLAS routines give us high effi- 
ciency if the BLAS routines were implemented optimally. However, if the BLAS 
routines were implemented with low efficiency, the performance will be poor. 
Solution for such implementation problem for BLAS is to use auto-tuning soft- 
ware for BLAS, such as PHiPAC [1] or ATLAS [11]. We call these software as 
auto-tuning software for general usage. 

On the other hand, tuning software automatically that does not or can not 
use BLAS is hard. Accordingly, every piece of software that can be tuned au- 
tomatically has a special auto-tuning facility. For example. FFTW [4] for the 

Candidate to the Best Student Paper Award 

-265- 



FEUP - Faculdade de Engenharia da Universidade do Porto 

discrete Fourier transformation, and the auto-tuning libraries [9] for sparse lin- 
ear equation solvers. We call these software packages as auto-tuning software 
for dedicated usage. This paper includes that the report of the development of 
such auto-tuning software for dedicated usage. The reasons for this report are 
as follows: 

1. Presently, auto-tuning software for parallel processing is not available. 
2. We believe that an auto-tuning facility should be contained in each package. 

As for reason 2, if the auto-tuning facility is separated from the package, users 
will be in trouble to attain high performance, because they have to install auto- 
tuning software into their environments separately. In addition, the time needed 
for auto-tuning may be enormous because it may tune even non-relevant sub- 
routines (consider the tuning time of all BLAS subroutines.) Hence, our routine 
contains this auto-tuning facility. 

This paper is organized as follows. Description of our parallel dense eigen- 
solver in Section 2. Section 3 is about the parameters of auto-tuning, and how 
to search for the optimal parameters. In Section 4. we show the results of the 
auto-tuned parameters and execution time of our routines using the auto-tuning 
methodology on the HITACHI SR2201 and HITACHI SR8000. The result of the 
SR2201 includes a comparison with the ScaLAPACK routine. Finally. Section 5 
gives the conclusion of this paper. 

2    Dense symmetric eigensolver 

2.1     Entire process 

Our eigensolver can perform the following eigendecomposition: 

A = XAX~1, (1) 

where A € ]R"xn is a symmetric dense matrix, A 6 Rnxn is a diagonal matrix 
which contains eigenvalues A,- 6 IR, i = 1,2 n as the 7-th diagonal elements, 
and A' £ IR"X" is a matrix which contains eigenvectors ,r, £ IRn as the ?-th 
row vectors, where n is problem size. In our eigensolver, the decomposition (1) 
is performed by using a well-known method, the Householder-bisection method. 
To perform the Householder-bisection method, the following four processes are 
needed. 

1. Tridiagonalization by the Householder method: T = QAQ. 
2. Eigenvalues of the tridiagonal matrix T are calculated by using the bisection 

method. 
3. By using the inverse-iteration method, eigenvectors of the tridiagonal matrix 

T are calculated. 
(The processes 2 and 3 yield the eigendecomposition T = YAY~l.) 

4. Reconstructing eigenvalues for the matrix A : X = QY. 
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Concerning the above four processes, the processes 1 and 4 can affect the whole 
performance if we need no orthogonalization in process 3. Process 4 depends on 
the data distribution of the matrices Q and Y [5]. For this reason, determining 
the optimal parallelization of process 4 is hard, and hence, the parallelization has 
not been treated in this paper. Next section describes how to parallelize process 

1. 

2.2 Householder tridiagonalization 

Consider the following transformation: A{1) = A to tridiagonal form A(n~2\ 
where A(k) is defined as the fr-th iteration of the matrix A. This transformation 

is denoted by H^{x) = H{k)(Al
k
k^ik), where 4-,U is a row vector of A which is 

constructed by the A-th row and from the A-th to the n-th columns in the A-th 
iteration. By substituting H{k) = I - auuT for H{k) {x) in the k + 1-th iteration, 
the following equations are derived: 

4(fr+l)  _ Jj(k)A(k)jj(k) 

= A{V - aA^uuT - auuTA^ + o?uuTA^m>T 

— .4(fc) - xvT - uyT + auuTxuT 

— A^ - uyT + U/JV
T
 - xuT 

= A{k)-u{yT-iJiiT)-xuT.. (2) 

where 

X = Q#»U,      yT = auTA^\      ß = avTx. (3) 

Here a.fj e JR., and u.x.y £ IR". As matrix A is symmetric, x = yT, and we 
obtain the following formula: 

A(k+i) = A(k) _ v{xT _ ^T) _ XUT^ (4) 

Note that to execute the k-th iteration, the column vector Ak-.n.k from the partial 
matrix Ak:n,k:n is needed. 

2.3 Parallel implementation of the Householder tridiagonalization 

Let p be the number of processor elements (PEs). The objective matrix A is 
distributed by r x q 2-D grid distribution, called grid-wise distribution (Cyclic. 
Cyclic), where r x q = p. The grid-wise distribution (Cyclic. Cyclic) distributes 
the elements of A to the following PEs: 

Qjj t—7 r(i mod r, j mod q)' \   / 

where the P[idxMy)- M-r = 0.1.....r - 1, idy = 0.1 q- 1) means the PE 
identification number on the 2-D grid distribution. We do not support block- 
cyclic distribution because the block-cyclic distribution causes poor load balance 
when n/p is small. 
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c Pmyidx.myidy owns row set 77 and 
c column set F of n x n matrix A. 

<1> do k=\, 71-2 

(2) if (A- € n then 

(3) broadcast(A^\) to 
L- PEs sharing rows 77 

<4> else 

(5) receive(-4jjk) 

(6) endif 

("> computation of (1/77, a) 

(8) if (I have diagonal elements of .4) 
k then 

(9) broadcast (tin) to 
k PEs sharing columns F 
(10) else 

(11) receive(uj-) 
(12) endif 
c computation of x = aA^ 'u 
(13) do j = /.\  71 

(14) if (j G F)xn =xn + a A^\ v3 

k endif 
(15) enddo 
(16) global summation of xn to PEs 
k sharing rows 77 

(IT) if (I have diagonal elements of .4) 
k then 
(18) broadcast(xn) to 
k PEs sharing columns r 
(19) else 
(20) receive(xr) 
(21) endif 
c computation of /J = at/   x 
(22) do ji=A\ 7i 
(23) U = aunxn    enddo 
(24) global summation of /./ to 
k PEs sharing rows 77 
c computation of 
c A(^)=AW_.u{xT_^uT)_xuT 

(25) do j—k. 7i 
(26) do i=k. n 

<27) if (?' e 77   .and.   ?' G D then 

(28) update .4[*+1) = 

k Aü ~ v,- (\J - TU'J) - Xl t-r 
(29) endif   enddo    enddo 
c remove k from active columns 
c and rows 
(30) if (k £ F)   F = r - {/,-}    endif 
(31) if (k e 77) 77 = 77 - U)    endif 
(32) enddo 

Fig. 1. Parallel algorithm for the tridiagonalization (the (Cyclic, Cyclic) grid-wise dis- 
tribution). 

We already developed the parallel tridiagonalization and Hessenberg reduc- 
tion routines [8] by the Householder transformation. Figure 1 shows our parallel 
tridiagonalization algorithm. The routine of Figure 1 reduces communication and 
broadcast times for vector reduction to a ratio of 1/^/p. The same idea appears 
in [3.6.5]. Symmetry of the matrix A was not used in the algorithm of Figure 
1. and hence, the algorithm has the computational complexity of 8??3/3. while 
the algorithm using symmetry has 47i3/3. This is because, the algorithm based 
on the symmetry causes complex data accesses, and the complex data accesses 
prevent easy parallel implementation. 

Figure 1 gives a conclusion that implementations of the following three op- 
erations affect the total performance. 

1. The global summations of the lines (7). (16). and (24). 
2. The matrix-vector product of the lines (13)—(15). 
3. The process to update the matrix A of the lines (25)-(29). 

These three operations are the basic operations for parallel tridiagonalization. 
and the system will tune the three basic operations automatically in our auto- 
tuning process. 
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3    Method for searching parameters 

In this section, the method of tuning the three basic operations automatically is 
described. Hereafter, we use MPI (Message Passing Interface) as the communi- 
cation library. 

3.1 Parameter for the global summations 

To perform the global summations, the following two implementations were se- 
lected. 

1. A routine based on the binary tree-structured communication, or 
2. The MPI.ALLREDUCE function on MPI. 

It depends on the implementation of MPI functions which implementation has 
the higher performance. Hence, measuring their real performance is necessary to 
select the best implementation. For that reason, our auto-tuning routine has a 
parameter for the above two implementations. 

3.2 Parameter for the matrix-vector product 

To perform the parallel matrix-vector product {x = aA{k)u) at high perfor- 
mance, the size of the stride for loop unrolling must be selected. The size of the 
stride depends on the machine architectures, operating systems, and compilers 
we use. Therefore, selecting the optimal number of stride without measuring its 
real execution time is hard. 

For example, a three-stride unrolled routine on the matrix-vector product 
are shown, where the value of ilocal_length_x can be divided by 3 to simplify 
the explanation. 

- m = ilocal_length_x/3 

j = 1 
do k=l, m 

dtl = O.OdO 
dt2 = O.OdO 
dt3 = O.OdO 
do i=l, ilocal_length_y 

du_y = u_y(i) 
ix = init_x+i 
iy = init_y+j 
dtl = dtl + A(ix, iy ) * du_y 
dt2 = dt2 + A(ix, iy+1) * du_y 
dt3 = dt3 + A(ix, iy+2) * du_y 

enddo 
x_k(j ) = dtl * al 
x_k(j+l) = dt2 * al 
x_k(j+2) = dt3 * al 
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3=3+3 
enddo 

This example shows a case of the loop unrolling for the outer-loop k only. We 
can unroll the inner-loop i or both of the loops k and i. Current target ma- 
chines are vector architecture machines as explained in the Section 4. Then, we 
only unrolled the outer-loop, since unrolling the inner-loop shortens the loop 
length which is not good for vector architecture machines. For the auto-tuning 
parameter, we take the size of the stride. 

3.3    Parameter for the process to update 

As in the case of the matrix-vector product, it is necessary to set the size of the 
stride for unrolling in the process to update (A{k+l) = A(k) -u(.rT

~/JU
T

)-XU
T

). 

For example, a two-stride unrolled routine on the process to update is shown, 
where the value of ilocal_length_x also can be divided by 2 to simplify the 
explanation. 

m = ilocal_length_x/2 

do k=l, m 
j = 2*(k-l)+l 
dtul = u_x(j  ) 
dtu2 = u_x(j+l) 
dtrl = mu * dtul - x_k(j ) 
dtr2 = mu * dtu2 - x_k(j+l) 
do i=l, ilocal_length_y 

du_y = u_y(i) 
dx_k = x_k(i) 
ix = init_x+i 
iy = init_y+j 
A(ix, iy ) = A(ix, iy ) + du_y * dtrl ■ - dx_k * dtul 
A(ix, iy+1) = A(ix, iy+1) + du_y * dtr2 ■ - dx_k * dtu2 

enddo 
enddo 

For the same reason as for the matrix-vector product, we only unroll the outer 
loop k. The auto-tuning parameter for the process to update is the stride for 
unrolling. 

3.4     How to search these parameters 

Let the parameters for the global summation, the matrix-vector product, and 
the process to update be denoted as Comm.Type. Mat-Vec. and Updating, respec- 
tively. The Comm.Type can take on the values { Tree. MPI_ALLREDUCE }. where 
Tree means a routine based on binary tree-structured communication, and the 
MPI_ALLREDUCE means communication by a MPI function. The Mat-Vec can 
have the values { None. 2, 3. 4. 5. 6. 8. 16 }. where the numbers show the size 
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of the stride for unrolling. The Updating can be chosen as { None, 2. 3, 4. 5. 6. 
8, 16 } like in the Mat-Vec case. 

Following is the description of how to search for optimal parameters. We first 
set the following default parameter values: 

Comm.Type = Tree, Mat-Vec = 8, Updating = 6. (6) 

Secondly, we searched the optimal parameters by using the above initial 
parameters. Method for varying the parameters is as follows. 

Comm.Type=Tree, Mat-Vec=8, and Updating is varied as { None. 2, 
3, 4, 5. 6. 8. 16 }. 
Comm.Type=Tree, Mat-Vec is varied as { None, 2, 3, 4, 5, 6, 8, 16 }, 
and Updating={ the selected value from the process 1 } 
Comm.Type is varied as { Tree, MPI_ALLREDUCE }, Mat-Vec={ the 
selected value from the process 2 }, and Updating={ the selected 
value from the process 1 }. 

This method can not find optimal parameters if there is a dependency among 
the three parameters. However, the basic operations we mentioned are separated 
physically (see Figure 1), hence, there is no dependency in the three parameters. 
Therefore, we may be confident that our method can find an almost optimal set 
of parameters. 

As for the problem sizes, n = 100 is specified as the initial values. The 
problem size is increased by using the stride of 100 while problem size n is under 
1000. the stride of 1000 while 1000 < n < 10000. and the stride of 10000 while 
n is over 10000. This increment is used in each searching process. 

4    Experimental results 

We implemented the auto-tuning methodology on the HITACHI SR2201 and 
HITACHI SR8000. 

The HITACHI SR2201 system is a distributed memory, message-passing par- 
allel machine of the MIMD class. It is composed of 1024 PEs, each having 256 
Megabytes of main memory, interconnected via a communication network hav- 
ing the topology of a three-dimensional hyper-crossbar. The peak interprocessor 
communications bandwidth is 300 Mbytes/s in each direction. We used the HI- 
TACHI Optimized Fortran90 V02-06-/D compiler, and the compile option we 
used was -rdma -W0. 'OPT(0(SS))\ 

The HITACHI SR8000 system is a distributed memory, message-passing par- 
allel machine of the MIMD class like the HITACHI SR2201. It is composed of 
128 nodes, each having 8 Instruction Processors (IPs). 8 Gigabytes of main 
memory, interconnected via a communication network having the topology of 
a three-dimensional hyper-crossbar. The peak interprocessor communications 
bandwidth is 1 Gbytes/s in each direction. The SR8000 system has two types 
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of parallel environments, named inner-node parallel processing and inter-node 
parallel processing. The inner-node parallel processing is so-called parallel pro- 
cessing in a sheard memory parallel machine, and there is no interprocessor com- 
munication. On the other hand, the inter-node parallel processing is like parallel 
processing as a distributed memory parallel machine, and it can perform inter- 
processor communications. We used the HITACHI Optimized Fortran90 V01-00 
compiler, and compile option we used was -WO, 'OPT(O(SS)).mp(p(0))' in the 
inner-node parallel processing, and -W0.'OPT(O(SS)).mp(p(4))' in the inter- 
node parallel processing. 

The communication library used for the SR2201 and SR8000 was MPI. Both 
machines have vector PEs in a sense, i.e. the Pseudo Vector Processor [2]. There- 
fore, we can regard both machines as vector-parallel machines. 

We implemented our tridiagonalization routine by using dedicated subrou- 
tines which satisfy functions for the three parameters. For instance, our routine 
contains a two-stride unrolled matrix-vector product subroutine, or a three-stride 
unrolled subroutine to update, and so on. By using such subroutines, we can spec- 
ify the arbitrary parameters. Note that our software does not generate Fortran 
codes dynamically in this experiments. All auto-tuning was done at run time. 

4.1     The results of the SR2201 

Results of auto-tuning Table 1 shows parameters auto-tuned on the SR2201. 
The tuning time depended on the number of PEs, and the CPU elapsed time 

Table 1. The auto-tuned parameters on the SR2201. 

(a) Case of 4 PEs (b) Case of 32 PEs 
Size Comm.Type Mat-Vec Updating Size     Comm.Type Mat-Vec Updating 
100 MPI. .ALLREDUCE 6 3 100 MPI.ALLREDUCE 6 16 
200 Tree 8 4 200 MPI.ALLREDUCE 4 5 
300 Tree 8 6 300 MPI.ALLREDUCE 4 4 
400 Tree 5 2 400 MPI .ALLREDUCE 6 3 
500 Tree 8 5 500 MPI_ALLREDUCE 6 4 
600 Tree 5 6 600 MPI_ALLREDUCE 6 4 
700 Tree 8 6 700 MPI_ALLREDUCE 8 3 
800 Tree 3 3 800 MPI.ALLREDUCE 5 3 
900 Tree 8 4 900 MPI_ALLREDUCE 4 3 

1000 Tree 5 5 1000 MPI.ALLREDUCE •5 3 
2000 Tree 5 6 2000 MPI.ALLREDUCE 5 5 
3000 Tree 5 5 3000 MPI.ALLREDUCE 8 5 
4000 Tree 3 3 4000 MPI.ALLREDUCE 5 5 
5000 MPI. .ALLREDUCE 5 5 5000 MPI.ALLREDUCE 8 5 
6000 MPI. .ALLREDUCE 5 5 6000 MPI.ALLREDUCE 5 5 
7000 MPI. .ALLREDUCE 5 5 7000 MPI.ALLREDUCE 5 5 
8000 MPI. .ALLREDUCE 3 2 8000 MPI.ALLREDUCE 3 3 

Tuning time 118401 (32.8 Tuning time 15555 (4.3 
[Sec] [Hours]) [Sec] [Hours]) 
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was about 32 hours at most. The tendency of the tuned parameter of Comm. Type 
were different between 4 and 32 PEs, and the tuned parameters of Mat-Vec and 
Updating was different on every problem size. From these facts, we expected 
that the routine is effective in speeding up. 

Comparison to ScaLAPACK To evaluate execution time of the tridiagonal- 
ization routine (hereafter TRD). we used the HITACHI optimized ScaLAPACK 
version 1.2 [7]. Its communication library used was PVM, and PBLAS (Paral- 
lel BLAS) which is the computational kernel for ScaLAPACK and is optimized 
by HITACHI limited. ScaLAPACK's tridiagonalization routine (hereafter SLP 
TRD) is implemented by using block-cyclic distribution, a blocked algorithm, 
and symmetry of the matrix [10]. Because of using a blocked algorithm, the size 
of blocking {BL) can greatly affect the performance of ScaLAPACK. According 
to [7], if the problem size n is less than 4000, the desirable BL is 60, and if n 
is over 4000, the desirable BL is 100 on the SR2201. Considering these recom- 
mended values, we evaluated the performance of the SLP TRD routines with 
BL - {40,60,80.100.120} to find which BL gives the best performance. In 
[7] it is shown that y/p x yfp is the best layout for the PE grid. We measured 
execution time in the PE grid for a large number of PEs. When the number of 
PEs is small, such as 4, 32, and 64, we measured time in all combinations for 
the PE grid to find which PE grid gives the best performance. 

Table 2 shows execution time of the TRDl (not auto-tuned). TRD2 (auto- 
tuned), and SLP TRD. Reasonable parameters of Comm.Type = Tree. Mat-Vec 
= 8. and Updating = 6 are specified in the TRDl (not auto-tuned). Note that 
the optimal BL size and PE grids for the SLP TRD are used, and the values are 
included in Table 2. 

Table 2. Execution time on the SR2201. Unit is in second. 

(a)C :ase of 4 PEs (b) Case of 32 PEs 

Size 

100 

SLP TRD 

(Grid,BL) 

0.02 
(1x4. 100) 

TRDl 

(not AT) 

0.056 
(2x2) 

TRD2 

(AT) 

0.056 
(2x2) 

TRDl 

/TRD2 

1.00 

Size 

100 

SLP TRD 

(Grid. BL) 

0.09 
(4x8. 100) 

TRDl 

(not AT) 

0.108 
(4x8) 

TRD2 

(AT) 

0.106 

(4x8) 

TRDl 

/TRD2 

1.01 

200 0.48 
(1x4. 100) 

0.131 
(2x2) 

0.133 
(2x2) 

0.98 200 0.87 
(2x16, 100) 

0.250 
(4x8) 

0.240 
(4x8) 

1.04 

400 1.73 
(1x4. 40) 

0.435 
(2x2) 

0.475 
(2x2) 

0.91 400 2.33 
(2x16. 60) 

0.514 
(4x8) 

0.516 
(4x8) 

0.99 

800 6.01 
(1x4, 40) 

3.732 
(2x2) 

2.454 
(2x2) 

1.5 800 6.27 
(2x16. 60) 

1.207 
(4x8) 

1.228 
(4x8) 

0.98 

1000 9.32 
(2x2. 40) 

3.817 
(2x2) 

3.785 
(2x2) 

1.0 1000 8.28 
(2x16. 60) 

1.654 
(4x8) 

1.687 
(4x8) 

0.98 

2000 41.90 
(2x2. 40) 

28.165 
(2x2) 

26.937 
(2x2) 

1.0 2000 22.18 
(4x8, 40) 

5.930 
(4x8) 

5.886 
(4x8) 

1.00 

4000 231.10 
(2x2. 40) 

411.666 
(2x2) 

242.010 
(2x2) 

1.7 4000 72.74 
(4x8, 40) 

32.961 
(4x8) 

32.124 
(4x8) 

1.02 

8000 1422.69 
(2x2, 100) 

3589.175 
(2x2) 

1962.512 
(2x2) 

1.8 8000 313.25 
(4x8. 40) 

427.267 
(4x8) 

254.937 
(4x8) 

1.6 
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Table 2 shows that we obtained 1.6-1.8 times speed-ups with respect to the 
TRD1 (not auto-tuned) when problem sizes were large, such as 4000. 8000. As 
for the SLP TRD execution time, we find that when problem size is small, the 
TRD was faster than the SLP TRD. On the other hand, when problem sizes per 
PE were large, the SLP TRD was faster than the TRD. We consider that this 
is explained from the computational complexity of the TRD, since the TRD has 
twice computational complexity to the SLP TRD. 

Figure 2 shows the execution time of the TRD1 (not auto-tuned), TRD2 
(auto-tuned), and SLP TRD in n = 2000 and 8000 cases. Note that the execution 
time of the SLP TRD in Figure 2 was specified the optimal BL and the PE grid. 
From Figure 2, we can conclude that when n — 2000. the TRD is always faster 
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(a) Case of n = 2000 (b) Case of " = 8000 

Execution time for the SLP TRD and TRD in the tridiagonalization (SR2201). 

than the SLP TRD. and the speed-up ratios are about 2-6 times. On the other 
hand, when n = 8000, the execution speed of the TRD was slower than the SLP 
TRD when the number of PEs was under 64, however, when over 64, the TRDs 
became faster than the SLP TRD. The effect of auto-tuning was high when the 
number of PEs was under 64. 

From the experimental results, we conclude that our methodology is useful, 
especially, when the problem sizes are large. In addition, the TRD is fast when 
the problem sizes are small on the SR2201. 

The execution time in every auto-tuning process To evaluate the auto- 
tuning process in detail, we analyzed the execution time in each of our auto- 
tuning process. Figure 3 shows the time when the problem size was 8000. 

From Figure 3 (a), we see that the specified initial parameters (Comm.Type 
= Tree. Mat-Vec = 8, Updating = 6) were worse than the case of Figure 3 (b). 
because the 6-stride of the process 1 (Updating) and the 8-stride of the process 
2 (Mat-Vec) in Figure 3 (a) were not optimal parameters, and the change of 
the elapsed time when varying these strides was high. Hence, we conclude that 
the initial parameters were not good for the case of 4 PEs. and this caused 
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Fig. 3. The execution time in every auto-tuning process. (SR'2201, n = 8000) 

high speed-up ratios. On the other hand, Figure 3 (b) shows that the initial 
parameters we specified were almost optimal values. For this reason, we conclude 
that we did not obtain better speed-ups on 64 PEs than the speed-ups on 4PEs 
on the SR2201. 

4.2    The results of SR8000 

Results of auto-tuning and execution time Table 3 shows auto-tuned pa- 
rameters on the SR8000. From Table 3. the tendency of tuned parameters was 
found to be different between the inner-node parallel and inter-node parallel 
environments. From this fact, we could also find the cases for the speed up. 
Table 4 shows execution time of the TRD1 (not auto-tuned) and TRD2 (auto- 
tuned). From Table 4, we obtained about 1.1-1.3 times speed-ups with respect 
to the TRD1 (not auto-tuned). The effect became stronger when problem size 
increased. So. the authors conclude that our auto-tuning methodology is also 
useful on the SR8000. 

5    Conclusion 

The authors have implemented and evaluated a tridiagonalization routine by 
using an auto-tuning methodology. Selecting suitable implementations for the 
global summation, the matrix-vector product, and the process to update on 
the parallel tridiagonalization is the auto-tuning methodology we mentioned in 
this paper, and the methodology is quite simple. Even though we used this 
quite simple methodology, we could obtain about 1.1-1.8 times speed-ups with 
respect to the routine for which the reasonable parameters in the SR2201 and 
the SR8000 were specified. From these results, the authors concluded that such 
an auto-tuning methodology is an effective technique. 

The auto-tuning methodology is for vector-parallel machines. The auto-tuning 
methodology for the RISC based parallel machines, such as selecting blocking 
factors in blocked algorithms, and evaluation on the RISC based parallel ma- 
chines are parts of the future work. 
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Table 3. The auto-tuned parameters on the SR8000. 

(a) Case of 1 Node (8 IPs) 
(SR8000. inner-node parallel, 

sheard memory) 

(b) Case of 4 Nodes (32 IPs) 
(SR8000, inter-node parallel. 

distributed memory) 

Size     Comm.Type     Mat-Vec Updating        Size     Comm.Type     Mat-Vec Updating 

100 MPI.ALLREDUCE 
200 MPI_ALLREDUCE 
300 MPI.ALLREDUCE 
400 MPI.ALLREDUCE 
500 MPI.ALLREDUCE 
600 MPI.ALLREDUCE 
700 MPI.ALLREDUCE 
800 MPI.ALLREDUCE 
900 MPI.ALLREDUCE 

1000 MPI.ALLREDUCE 
2000 MPI.ALLREDUCE 
3000 MPI.ALLREDUCE 
4000 MPI.ALLREDUCE 
5000 MPI.ALLREDUCE 
6000 MPI.ALLREDUCE 
7000 MPI.ALLREDUCE 
8000 MPI.ALLREDUCE 

None None 100 Tree None 2 

4 None 200 Tree None None 

8 None 300 Tree None 2 
4 None 400 Tree None None 

5 None 500 Tree None None 

6 3 600 Tree None None 

6 None 700 Tree None None 

6 3 800 Tree 4 None 

6 None 900 Tree 4 None 

6 3 1000 Tree 6 None 

6 None 2000 MPI. .ALLREDUCE 6 4 

6 None 3000 MPI. .ALLREDUCE 6 4 

6 None 4000 MPI. .ALLREDUCE 4 16 
4 None 5000 MPI .ALLREDUCE 4 16 

4 None 6000 MPI .ALLREDUCE 4 16 
6 None 7000 MPI .ALLREDUCE 6 16 
6 None 8000 MPI .ALLREDUCE 6 16 

Tuning time      16325 (4.5 
[Sec]     [Hours]) 

Tuning time 4443 
[Sec] 

(1.2 
[Hours]) 

Table 4. Execution time on the SR8000. Unit is in second. 

(a) Case of 1 Node (8 IPs) 
(SR8000. inner-node parallel, 

sheard memorv) 

(b) Case of 4 Nodes (32 IPs) 
(SR8000. inter-node parallel. 

distributed memory) 
size 

100 

TRDl 
(not AT) 

0.024 
(2x4) 

TRD2 
(AT) 
0.022 
(2x4) 

TRDl 
/TRD2 

1.09 

Size 

100 

TRDl 
(not AT) 

0.038 
(2x2) 

TRD2 
(AT) 
0.036 
(2x2) 

TRDl 
/TRD2 

1.05 

200 0.053 
(2x4) 

0.049 
(2x4) 

1.08 200 0.077 
(2x2) 

0.072 
(2x2) 

1.06 

400 0.162 
(2x4) 

0.145 
(2x4) 

1.11 400 0.176 
(2x2) 

0.162 
(2x2) 

1.08 

800 0.678 
(2x4) 

0.587 
(2x4) 

1.15 800 0.490 
(2x2) 

0.450 
(2x2) 

1.08 

1000 1.155 
(2x4) 

0.988 
(2x4) 

1.16 1000 0.714 
(2x2) 

0.648 
(2x2) 

1.10 

2000 7.098 
(2x4) 

5.595 
(2x4) 

1.26 2000 2.806 
(2x2) 

2.345 
(2x2) 

1.19 

4000 50.451 
(2x4) 

39.263 
(2x4) 

1.28 4000 14.957 
(2x2) 

11.392 
(2x2) 

1.31 

8000 389.297 
(2x4) 

308.307 
(2x4) 

1.26 8000 102.369 
(2x2) 

75.398 
(2x2) 

1.35 
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Abstract. In this work we show several portable sequential and parallel 
algorithms for solving the inverse eigenproblem for Real Symmetric 
Toeplitz matrices. The algorithms are based on Newton's method (and 
some variations), for solving nonlinear systems. We exploit the structure 
and some properties of Toeplitz matrices to reduce the cost, and use Finite 
Difference techniques to approximate the Jacobian matrix. With this 
approach, the storage cost is considerably reduced, compared with parallel 
algorithms proposed by other authors. Furthermore all the algorithms are 
efficient in computational cost terms. We have implemented the parallel 
algorithms using the parallel numerical linear algebra library 
SCALAPACK based on the MPI environment. Experimental results have 
been obtained using two different architectures: a shared memory 
multiprocessor, the SGI PowerChallenge, and a cluster of Pentium II PC's 
connected through a Myrinet network. The algorithms obtained show a 
good scalability in most cases. 

1     Introduction and objectives 

In this work we show several portable sequential and parallel algorithms for solving 
the inverse eigenproblem for Real Symmetric Toeplitz (RST) matrices. These matri- 
ces appear in several numerical problems in physics and engineering. There are many 
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references related to solving Toeplitz linear systems, however references related to 
the Toeplitz inverse problem are limited. Parallel computing is specially appropriate 
due to the high computational cost of solving this problem. 
The algorithms presented in this paper are based on Newton's method, (Newton, 
Shamanskii and Chord methods, and the Armijo Rule) [9], for solving large scale 
general nonlinear systems. We exploit the structure and some properties of the To- 
eplitz matrices to reduce the cost. We use finite difference techniques [9] to approxi- 
mate the Jacobian Matrix. Our idea is to use as standard a method as possible. 
Our approach to solve the problem as a general nonlinear system is different from 
other "state of the art" sequential [18] and parallel [3] algorithms. Our algorithms 
considerably reduce storage cost, and thus allow us to work with larger problems. 
Furthermore, our algorithms are efficient in computational terms. 
To carry out the experimental study, we worked with 15 test problems detailed in 
[2] [15]. Each problem has a different pattern (spectrum) of eigenvalues. To compare 
with other nonlinear system methods we used Powell's method, implemented in the 
MINPACK-1 [14] standard package. Powell's method is a robust general purpose 
method to solve nonlinear systems. 
We implemented all the algorithms using portable standard packages. In the case of 
sequential algorithms we used LAPACK [1] numerical linear algebra library. And 
for parallel algorithms we used SCALAPACK [4] and BLACS [19] libraries, based 
on the parallel MPI [3] environment. All programs have been implemented using C++ 
language. 
Experimental results have been obtained using two different architectures: a shared 
memory multiprocessor, the SGI PowerChallenge, and a cluster of Pentium II PC's 
connected through a Myrinet [13] network. However other machines could be used 
due to the portability of the packages and our code. 
In both machines we obtained good results and all the algorithms are scalable. The 
scalability of the algorithms is specially good even when working with problems 
where the initial size of the scalability test is small. 
We want to emphasize the behaviour of the algorithms using the cluster of PC's and 
the Myrinet network. This system is a good, cheap alternative to more expensive 
systems because the ratio performance/price is higher than when using classical MPP 
machines. 

2     The problem 

Let t = {t0,t],...,tri_l} where f0,*,,...,<„_, are real numbers, and let7Y./) be the real 

symmetric Toeplitz (RST) matrix: 

We say that t generates T(t), and denote the eigenvalues of T(t) by: 

l(t)<XAt)<.<XSt)- 
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The inverse problem [18] for RST matrices can be described as follows: 

Given « real numbers A, <A2 <... < An, find an «-vector t such that: 

A,(?) = A„l<i<n. 

We will call A, < A2 <... < A„ targe/ eigenvalues, and A = [A,, A2,..., An J the target 

spectrum. 

We will use nonlinear system techniques to find ? = [?„,?,,...,*„_,] where /„,?,,...,?, 

are the RST matrix coefficients. Thus, tm is the starting point and we construct an 

iterative process which converges to t(l) = [/„"V,"',...,* <0,,-i] . The «-vector f(,)must 

fulfill T(tU)) eigenvalues are the target spectrum eigenvalues. 

2.1     Newton's Method 

We used Newton's method (and some variations) to solve our nonlinear system, be- 
cause this method is powerful and it has quadratic local convergence [9]. Newton's 
method [9] is based on the following algorithm, where J is the Jacobian Matrix and F 
is the function (k is the iteration number): 

J{x)p  =-F(x), •/(*') eft™, 

X :xk+p p, F(x')eSR". 

We also used several variations to Newton's method: if we only compute the Jacobian 
matrix and factorize in the first iteration, we use the Chord method. If we compute the 
Jacobian matrix and factorize in some iterations, this is the Shamanskii method. 
These changes reduce the time cost of Newton's method, because far fewer Jacobian 
evaluations and factorizations are performed, however convergence is q-linear [9]. 
This can be showed better if we write the transition from x' to x'"': 

Vj     =xk -J{xk)'XF{xk) 
*s-l 

yJ+i = Vj ~ J(*k)   F(x )    for 1 < j < m -1, 

*   =yn 
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Note that m = 1 is Newton's method and m = °° is the Chord method. Other values 
of m define the Shamanskii method. These methods are frequently used for very large 
problems. 
To improve convergence, we used the Armijo rule. The idea is to convert the above 
methods from local to global convergence [9]. This improvement allows us to reach 
convergence in some cases. 

2.2     Adapting Newton's method to the inverse Toeplitz eigenproblem 

Newton's method must be characterized for the problem to be solved. We must char- 
acterize each step to the inverse Toeplitz eigenproblem: 

The starting point (x°): we used two different starting points. Both of them are ex- 
perimental and depend on the problem to solve (the target spectrum). 

Normalized [3] Lauriefl 1]: 
1 

t =< 
if i = l 

V2(«-l) 
0 if i*l 

orTrench[18]: 

1 

t.=i 
if i is odd 

0        if i is even * J"' 
.4 

V J 

The function F(^): is the value of the function at the k iteration. 

Let t be the vector that generates T(t). 

Let  A = [Äi,AJ)...,A:i]  the target spectrum,  then F(x),  *e9T,  is  defined  as 

F(x) = eig(T(x))-A. 

where 

eig(T(x)) = [Xl(x),l2(x),...,Xn(x)]T 

The computational cost of computing the eigenvalues of a large matrix is high. We 
can exploit here some of the properties of the Toeplitz matrices. If we use Cantoni 
and Butler's theorems [5], we can obtain the eigenvalues of the matrix from the ei- 
genvalues of two matrices half its size. 
The Jacobian matrix J(x*): is the value of the Jacobian matrix at the k iteration. We 
must compute it with the forward difference approximation technique: 
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_      \X    ) — 
dxk h 

This technique produces a great increase in the time cost, because F(x)has to be 
computed once per iteration, and, F(x + fe ), j = 1,2...« must be computed once per 
column j of the Jacobian matrix. This is the most time consuming step in our algo- 
rithms. However, this cost can be alleviated slightly as the entries of the first column 
do not have to be computed because they are 1: 

eig(T(tw + hei))-eig(T(tin)) _ eig{T{tw)) + h-eig{T{tw)) _ h _ ^ 

Alternative techniques to construct the Jacobian matrix can be found in [11] and [18], 
but those techniques imply the construction and storage of the eigenvectors of an RST 
matrix. The use of the difference approximation alleviates the computational and 
storage cost of this step. 

Storage cost is determined by the costs of computing the eigenvalues, and solving a 
linear system. The cost is the same for the three methods: 1) Storing the matrices to 
compute F, and 2) Storing the Jacobian matrix and the linear system. The cost of 1 
consists of storing two half sized problem matrices, and the cost of 2 is storing one 
problem sized matrix. 

The linear system: the Jacobian matrix has no special structure or property. We used 
the LU solver and forward and backward substitution for solving two triangular sys- 
tems [8]. 

2.3 The sequential algorithm 

To carry out the sequential algorithm we used all the techniques explained in the 
former section. Furthermore to obtain a code as efficient as possible we used the 
linear algebra library LAPACK. The Newton algorithm particularized for the inverse 
Toeplitz eigenproblem will be as follows: 

The Newton sequential Algorithm (for the Inv. Toeplitz 

eigenproblem) 

Choose a starting point x° 
Compute vector F(x  ): 

v<r-F(x) = eig{T{x))      (* F(x") + A   *) 

While the stopping criterion has not been reached 
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Compute Jacobian Matrix J(x  ): 
If column j=l 

J(/),=[l5l...l]
r 

else 
For j=2:n 

w <r- F(x" + he.) = eig(T(x" + he.)) (*F(x" + hej) + A *) 

*   w-v 

h 

Solve the linear system J(xk)sk = -[F(xk) + A) : 

Factorize J(x ) = LU 

Solve LUs" =-(F(xk) + A)    (* F(x") + A   *) 

Update the iterate x +1 = x +s 
Compute vector F(x ): 

v<r-F(x") = eig(T(xk))     (* F(xk) + A   *) 

The Chord and Shamanskii Methods have similar algorithms. 

The computational cost of the sequential algorithm will depend on the iteration cost. 
The algorithm uses routines to: compute the eigenvalues, add two vectors, solve a 
linear system, compute vector norms and merge two vectors. The final expression is 
as follows: 

Newton Chord Shamanskii 

/     4 _     3 \ 4 3 
' n      in   I n n 

+  — + k 
K 3       3 ) 3      ' 3 

/     4 3 \ n n 
— + m — 

{3 3 ) 

where kK,ks and kc are the respective iterations for Newton's, the Shamanskii and 

Chord methods. A more detailed analysis can be found in [15]. 

Storage cost is the same for the three methods: 1) Storing the matrices to compute F, 
and 2) Jacobian matrix and the linear system. The cost of 1 consists of storing two 
half sized problem matrices, and the cost of 2 is storing one problem sized matrix: 

Cost = 21-1 +n2 =— . 
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3   Parallel algorithm 

3.1      How to parallelize the sequential algorithm 

To carry out this work, we worked with the SCALAPACK package. We parallelized 
the computation of the Jacobian, the solution of linear system, and the updating of the 
iterate. All the steps are parallelized to iteration level. 

SCALAPACK algorithms work with a 2-D logical mesh and a bidimensional block 
cyclic data distribution. Below is a possible distribution of a 9 x 9 Jacobian Matrix, 
before computing the LU decomposition, for the case of a 2 x 3 mesh of processors: 
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Fig. 1. SCALAPACK block cyclic distribution for the LU algorithm and the right hand side. 

A standard SCALAPACK distribution could be as follows: distributing a matrix of Mrows x N 
columns, partitioned in MB x NB sized blocks on a 2-D processor mesh with P processors. The 
mesh size is Pr row processors by Pc column processors. The (i,j) entry is located on the proc- 

essor (pr, pc) as follows: 

(Pr, Pc ) = [((''-1) div MB) mod P , ((j -1) div NB) mod P ] 

0<pr<P-\,    0<pc<P-l, 

\<i<M,    \<j<N. 

Analogously on (pr,pc) the entries (i,j) are located: 

(i,j) = (x*MB*P+pr*MB + k , y*NB*P +pt*NB + l ) 

x = 0. 
f     M    ^ 

KMB*P j 
-1 k = \...MB 
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y = 0.. 

f    N    ^ 

KNB*Pj 
-1 l = \...NB 

For the right hand side vector we must reference the indexes showing the row entries. 

We oriented our algorithms to optimize the computation of Jacobian matrix J, be- 
cause it is the most time consuming step. First, we need to apply the forward differ- 
ence approximation formula to compute the Jacobian matrix. To do this F(x) must be 
replicated in each processor. Therefore F is always computed sequentially in each 
processor. As we obtained F(x) before, we only need to compute 
F(x + he ) with j = 1,2... n. Our suggestion for performing this computation efficiently 

is the following: 

Each column of processors in the logical mesh provided by the SCALAPACK pack- 
age, is in charge of computing a set of columns in the Jacobian Matrix. For example 
Fig. 2 shows that, processors (px,p0) must compute the columns 1,2,7,8, processors 

{px,P\) must compute the columns 3,4,9 and so on. 

0 1 2 

0 
e 

i 
2 

smpu 
1.2 

i 

") 

i 

c 
3 
4 

^omp 
3,4 

i 

uteN 

k 

e 
5 

ompi 

i 

1 ' 
7 
8 1 ' 

9 
1 f 

6 

1 e jmpu 
7,? 0 c "ompute^N 

9     J e ompi 
6 

Fig. 2. Computing the Jacobian in parallel. 

In addition, the work corresponding to a column of processors is divided among the 
processors in that column. Thus, in our example processor (p0,p0) computes 

columns 1,2 and processor (P],p0)computes columns 7,8. The same idea is applied 

to all the processors. Finally, a local communication between processors must be 
carried out in the same column, in order to achieve the adequate ditribution of the 
Jacobian matrix. 

Once the Jacobian Matrix has been computed, we need to solve the linear system and 
update the iterate. For solving the linear system, we used the PDGESV (and some 
variations) SCALAPACK routine. The distribution of the elements is shown in Fig. 1. 

-286- 



VECPAR '2000 - 4th International Meeting on Vector and Parallel Processing 

When the system is solved the solution 5 is left on the right hand side vector. Then we 
only have to broadcast 5 to all the processors, and update the iterate. 

For broadcasting s, we used two BLACS steps: 

1. All the first column processors must have the complete sw. 

2. Each first column processor sends the complete vector to the processors located in 
its same row. 

Each step can be performed by calling one routine in BLACS. 

With these steps the vector is located in all the processors, and we only have to update 
Jc"+"=JC("+5(". 

From the point of view of a processor that belongs to the mesh of (Pr, P) processors, 

the algorithm must be as follows: 

The Newton  Parallel  Algorithm   (for the  inv.   Toeplitz 

eigexiproblem) 

Choose x°  {*   same on all  the processors   *) 
Repeat 

Compute  F using: 
F(x) = eig(T(x))     (*  F(xk) + A   *) 

Compute Jacobian Matrix J(x ): 
For the (n/Pr)  columns of (P,P) 

If  column j = le(pr,pt) 

./(*'),= [1,1,...,1] 
else 

w<-F(xk+he.) = eig(T(x'+he.))     (* F{x"+he.) + K   *) 

k        w-v 
y(*V-— h 

Exchange the (nIP) rows with the rows belonging 

to the processors (i,pt)    i = 0...P-l, i * P, 

Solve the linear system J(xk )sk = -F(x ): 

using the SCALAPACK'S pägesv{J(xk),-F(xk),s,pr,pt) 
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Update the iterate: 
If (pt = 0) ( * column 0 processors *) 
Update the subvector x adding the subvector s 
Broadcast the subvector x 

else 
Receive the updated subvector x 

until the stopping criterion has been reached 

The complete computing cost (T ) for all the algorithms can by obtained by adding 

the arithmetic cost (Ta) plus the communication cost (71). When obtaining T we 

must bear in mind the time to execute one floating operation tf. And when obtaining 
Tc we must take into account the time used to send a data item T, plus the time to 

prepare the message (latency) ß [4] [7]. This gives us the following expression to send 
a message composed by n data items: 

tc =ß + nt 

A more detailed cost analysis can be found in [15]: for our algorithms the complete 
computing costs are: 

Newton 

71=*. 
' n       n      n   ' 
— + — + — 

V3P    3P     3 j 
tf+(n+ nsfp)t + (nlog2P+ njp)ß 

Chord 
/      4 k n 

y$p 
T=l— + -si- L + (n2 + 2knJp)T + (n log2 P + kcn-Jp)ß . 

Shamanksii 

T=k — + — + ÜÜL \t +(n  +2mn-Jp~)T + (n\og7P + mn*fp)ß 
V3P    IP      3    ' 

Storage cost is the same for the three methods: 1) Storing the matrices to compute F, 
and 2) Jacobian matrix and the linear system. The cost of 1 consists of storing two 
half sized problem matrices replicated in each processor, and the cost of 2 is storing 
one problem sized matrix: 

«V 2     (P + 2)n 
Total cost=2| -    P + n  =- — 

.2) 2 

n1    n2 

Cost per processor = 1 . 

This cost improves that of the algorithms in [11] and [18] because we do not need to 
compute and store the eigenvectors. 
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4   Experimental Results 

4.1 The tests 

We show here a brief study of the performance of the parallel algorithm: we used a 
group of 15 problems [15]. Each problem consists of different kinds of spectrum. The 
three first types of spectrum are generated randomly, following some statistic distri- 
butions. The other 12 types correspond to the eigenvalues of tridiagonal matrices used 
as test matrices in several papers [12] [3]. In the latter 12 spectra we can distinguish 
between the first 7, where the elements and the spectra are generated using well de- 
fined formulas, and the last 5, where the matrices and the spectra are generated using 
LAPACK's dlatms  [6] routine. 
We chose here type 4 of the 15 test problems and applied the Newton's Parallel 
method. We used 6 different problem sizes N=200, 256,400, 800, 1200, and 1600. 

°1 N=2D0 N=400 N=1200 

N=256 N=800 N=1600 
-3- (*'/} 

,: 
yy/  -rf^"*""   / 

3 
1         1 
1        2 

I 
3 

I         I 
4       5 

I         I 
3       7       8 9      1( 

Fig. 3. Speedup figures corresponding to the SGI (left) and the cluster of PC's (right). 

The experiments were carried out on two different machines: a SGI multiprocessor 
with 10 processors MIPS R10000/195 MHz, and on a cluster of 20 Pentium 11/300 
MHz PC's with a Myrinet network. The figures (Fig. 3) show the speedup of our 
algorithms. Speedup was obtained with respect to the Chord algorithm because it 
performs better than the Powell's method standard algorithm, used in the MINPACK- 
1 package [14]. 
The good performance obtained on both machines can be clearly seen. In both figures 
we are near the theoretical maximum speedup. The performance is good even for 
small problem sizes. 
A scalability study was also carried out. Fig. 4 shows the scaled speedup [10]. N is the 
initial size for each case and is increased times a factor k(p) when increasing the 
number of processors p (see [10]). For example for the N=200 case, the successive 
sizes will be 238,282,313  
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Fig. 4. Scaled speedup corresponding to the cluster of PC's. 

Fig. 4 shows that our algorithms are scalable. Performance is specially good for 
problems where the initial sizes for the scalability test are small and medium. For 
large initial size scalability decreases slightly. 

4.2 Performance evaluation compared with the theoretical model 

In this section we carried out a theoretical performance analysis for the parallel algo- 
rithms. We used the theoretical costs shown in the former sections and a machine 
analysis to parameterize our machine. The analysis consists of obtaining the parame- 
ters to characterize the machine (tf,T,ß), and with these parameters, the main goal 
is to obtain the theoretical behaviour of our algorithms. In our case we performed the 
analysis using a network of computers: standard PC's and a Myrinet network, and all 
our algorithms. 

To obtain tf (the flop time) we could use a standard routine of any of the sequential 
libraries, but this time varies too much between different routines, that is to say, for 
different algorithms we will obtain different flop times. Another more accurate possi- 
bility consists of obtaining tf using our sequential algorithm. With this analysis the 
flop time is tf = 0.018 microseconds. 

To obtain the communications time, we used the double Ping-Pong algorithm where 
one processor sends several different sized messages to another, which then returns 
the messages. The measured time in this operation is half that required to send and 
give back each message. Sending the minimum sized packages we can obtain the 
value of ß, while sending the maximum sized messages we can obtain the value of 
T. The value obtained for the latency ß is 33 microseconds, and the value for T is 
0.03 microseconds. 
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We included this study for two reasons: firstly, to test if the theoretical model devel- 
oped before is good, and secondly, to be able to predict the behaviour of the algo- 
rithm on a computer, using the theoretical model obtained. 

10     12     14 
Processors 

Fig. 5 and 6. Comparing the theoretical speedup model (left) and the experimental speedup 
(right). 

We can compare the figures corresponding to the theoretical and experimental 
speedup models. It can be appreciated that the two figures are very similar. The only 
small difference corresponds to small size matrices (200 and 256). In addition the 
theoretical speedup is a little better than the experimental. This is normal. 

With this analysis we can assume that our theoretical model is good. In principle such 
a model could be good to predict the behaviour of the algorithm on the computer, 
changing the size of the problem and/or the number of processors. 

5     Conclusions 

We have developed a new approach to solve the inverse eigenproblem for RST matri- 
ces. Our method has several advantages with respect to "state of the art" algorithms. 
We solve the problem as a general nonlinear system, using the difference approxima- 
tion technique to approximate the Jacobian. This gives a more general perspective on 
this problem. We have also managed to reduce storage cost, which allows us to work 
with larger problems. 
Furthermore, our parallel algorithm is efficient when working with small and medium 
sized problems. 

With respect to the theoretical model, we think the model is quite close to the experi- 
mental model. This is very important because with such a model in principle we can 
predict at the behaviour of any algorithm using the parameterized machine (in our 
case the Myrinet network). Finally, we note the behaviour of the Myrinet network. 
We think it could be a good, cheap alternative to classical MPP machines. 
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